SE-CXTC -SEM II - CASSES

Q.P. Code: **5328**

(3 Hours)

[Total Marks:80

N.B.: (1) Question No.1 is compulsory

- (2) Solve any three from remaining five questions.
- (3) Figure to the right indicates full marks.
- (4) Assume suitable data if necessary.
- Solve Any four:-

- (a) In case of CE amplifier, Why does the bandwidth of amplifier decrease with increase in gain? Support the answer with relevent mathematical equation.
- (b) Instead of single Power Supply, why we use Dual power supply biasing for differential amplifier?
- (c) Why Efficiency of class A power Amplifier is less than class B.
- (d) What is the drawback of current mirror circuit using MOSFET? How it is overcome?
- (e) Why we prefer series voltage Regulator over shunt voltage Regulator? Explain in detail.
- The Parameters of transistor are $V_{BE} = 0.7V$ and $\beta = 100$, $V_A = 0V$, Determine 10 2. (a)
 - (a) Q point of BJT
 - (b) Time constant associated with C_{C1} and C_{C2}
 - (c) Lower cut-off freq. due to C_{C1} and C_{C2}

TURN OVER

MD-Con. 8178-15.

2

- (b) For the PMOS CS amplifier, transistor parameters are $V_{TP} = -2V$, Kp = 1 mA/V^2 , $\lambda = 0$, Cgs = 15pf, Cgd = 3pf
 - Determine (a) Equivalent Miller capacitance
 - (b) upper 3dB frequency

- 3. (a) For the given circuit, Determine
 - (i) Differential mode gain Ad
 - (ii) Common mode gain Ac
 - (iii) CMRR

For BJT $\beta = 100 \text{ V}_{BE} = 0.7 \text{V}, \text{ V}_{A} = 100 \text{V}.$

[TURN OVER

10

10

- (b) Draw and explain the working of class A power amplifier (Transformer coupled). Derive the expression for efficiency.
- 4. (a) Draw and explain current mirror circuit using MOSFET, for the given circuit determine the value of I_{ref} and I_o.

- (b) Draw the circuit diagram of darlington pair using BJT, and derive the expression for Av, Ai, Zi and Zo.
- 5. (a) For the given circuit, derive the equation for voltage gain A_f and find V_o 10 for given cor

Vi	Vo	Ri	Rf
+1VDC	?	IK	10k
+1VDC	?	lK	100K
+1VDC	?	lk	1M

TURN OVER

Q.P. Code: 5328

4

(b)	Draw the circuit diagram of MOS differential amplifier and derive the	10
	expression for A_d , A_{cm} and CMRR.	

- 6. Write short notes on (Attempt any Four.)
 - (a) High pass and low pass filter using OPAMP
 - (b) Cascode amplifier using BJT.
 - (c) Widlar current source using MOSFET.
 - (d) Transistor shunt voltage regulator
 - (e) High frequency hybrid- π model of BJT.

MD-Con. 8178-15.