4. (a) Show that the set of functions $\sin \frac{\pi x}{2L}$, $\sin \frac{3\pi x}{2L}$, $\sin \frac{5\pi x}{2L}$

is orthogonal over (0, L). Construct set of orthonormal functions.

- (b) Using Laplace Transform method, solve the differential equation $y^{11}+2y^1+5y=e^{-t}$ sint given y(0)=0, y'(0)=1
- (c) Test for consistency and if consistent solve the equations

$$x + y + z = 6$$

 $x - y + 2z = 5$
 $3x + y + z = 8$
 $2x - 2y + 3z = 7$

- 5. (a) Using convolution theorem find $L^{-1}\left[\frac{1}{(s-2)^2(s+3)}\right]$
 - (b) Obtain half range sine series in $(0, \pi)$ for $f(x) = x (\pi x)$ and hence find 6

$$\sum \frac{(-1)^n}{(2n+1)^3}$$

- (c) Find Fourier Sine Integral of $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 x, & 1 < x < 2 \\ 0, & x < 2 \end{cases}$
- 6 (a) Find $L^{1}\left[\frac{s e^{-2s}}{s^{2}+2s+2}\right]$
 - (b) Prove that the matrix

$$A = \begin{bmatrix} \frac{1+i}{2} & \frac{-1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2} \end{bmatrix}$$
 is unitary

Q.P. Code: 1066

3

(c) Obtain the fourier series of $f(x) = 1 + \frac{2x}{\pi}$, $-\pi \le x \le 0$ $= 1 - \frac{2x}{\pi}$, $0 \le x \le \pi$

Hence deduce that

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

- 7. (a) Find Z transform of $f(k) = 2^{\lfloor k \rfloor}$
 - (b) Find $L^{-1} \left[\frac{3s+1}{(s+1)(s^2+2)} \right]$
 - (c) Find the inverse z transform of $f(z) = \frac{z}{(z-2)(z-3)}$ for |z| > 3

Amrill

20/11/15

5

6

Q.P. Code: 1066

OLD COURSE

(3 Hours)

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four questions out of the remaining six questions.
- (3) Figures to the right indicate full marks.

1. (a) If
$$A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$$
 Find A^{-1}

(b) Find
$$L\left[\frac{\cos 2t \sin t}{e^t}\right]$$

- (c) Find the z transform of $f(k) = b^k$, K < 0
- (d) Find the complex form of Fourier series for $f(x) = e^x$ for $-\pi < x < \pi$ 5
- 2. (a) Find Laplace transform of $f(t) = t\sqrt{1 + \sin t}$
 - (b) If $f(x) = 9-x^2$ for -3 < x < 3. Obtain the fourier series of f(x).

(c) Find the rank of the matrix
$$A = \begin{bmatrix} 25 & 31 & 17 & 43 \\ 75 & 94 & 53 & 132 \\ 75 & 94 & 54 & 134 \\ 25 & 32 & 20 & 48 \end{bmatrix}$$

by reducing it to the normal form.

3. (a) Prove that
$$\int_{0}^{\infty} e^{-3t} t \sin dt = \frac{3}{50}$$

- (b) Examine whether the vectors $x_1=[3, 1, 1]$, $x_2=[2, 0, -1]$, $x_3=[4, 2, 1]$ are linearly independent
- (c) Find the Fourier series of the function $f(x) = \sqrt{1 \cos x}$ in $[0, 2\pi]$ and hence

show that
$$\sum \frac{1}{(4n^2-1)} = \frac{1}{2}$$