. ,

SE-EXTC-SOMIT - OLD

An I

23/11/15.

QP Code: 1331

[OLD COURSE]
(3 Hours)

[Total Marks:100]

[5]

N.B. (1) Question No. 1 is compulsory.

- (2) Attempt Any FOUR questions out of the remaining SIX questions.
- (3) Figures to the right indicate full marks.

(b) Construct an analytic function whose real part is
$$x^4 - 6x^2y^2 + y^4$$
 [5]

(c) A vector field is given by
$$\overline{F} = (x^2 + xy^2)\hat{i} + (y^2 + x^2y)\hat{j}$$
. Show that

$$\overline{F}$$
 is irrotational and find its scalar potential . [5]

(d) Prove that
$$J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$
. [5]

2(a) Verify Green's theorem in plane for
$$\int (xy + y^2)dx + x^2dy$$
 where C is the

close curve of the region bounded by
$$y = x$$
 and $y = x^2$. [8]

(b) If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 then find A^{50} [6]

3(a) Show that the matrix
$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
 is diagonalizable. Find the

(b) Evaluate
$$\int_{A}^{B} (y^2 dx + xy dy)$$
 along $x = t^2$, $y = 2t$ from (1,-2) to B(0,0) [6]

(c) Evaluate
$$\int \frac{3z^2 + z}{z^2 - 1} dz$$
 where C is circle |z|=2. [6]

4(a) Reduce the given quadratic form
$$2x^2 + y^2 - 3z^2 + 12xy - 4xz - 8yz$$
 to canonical form and find rank and signature,

(b) Evaluate by Residue theorem,

$$\int_{0}^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta$$
 [6]

(c) Prove that
$$J_{\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left\{ \frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right\}$$
 [6]

5(a) Expand
$$f(z) = \frac{1}{z(z+1)(z-2)}$$
 when i) $0 < |z| < 1$ ii) $1 < |z| < 2$ iii) $|z| > 2$ [8]

(b) Using Cayley Hamilton theorem find $A^6 - 6A^5 + 9A^4 + 4A^3 - 12A^2 + 2A - I$

where
$$A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$$
 [6]

(c) Find the bilinear transformation which maps the points z=1,i,-1 on to the points i,0,-i in W plane [6]

6(a) By using Stoke's theorem evaluate $\int_C [(x^2+y^2)\hat{i}+(x^2-y^2)\hat{j}].d\bar{r}$ where C is the boundry of the region enclosed by circles $x^2 + y^2 = 4$, $x^2 + y^2 = 16$. [8]

(b) Show that the matrix $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ is non derogatory.

(c)Show that the following function

$$f(z) = \frac{x^2 y^5 (x + iy)}{x^4 + y^{10}} \quad z \neq 0$$

z=0 is not analytic at the

origin although Cauchy Riemann equations are satisfied

[6]

7(a) Evaluate $\iint \overline{F} \cdot ds$ using Gauss Divergence theorem, where $\overline{F} = 4x\hat{i} - 2y^2\hat{j} + z^2\hat{k}$ and S is the region bounded by $y^2 = 4x, x = 1, z = 0, z = 3$ [8]

(b) Show that the map of real axis of the Z plane is a circle under the transformation ,, $w = \frac{2}{z+i}$ Find its center and radius. [6]

(c)Expand f(x)=1 in (0<x<1) in a series as 1= $\sum \frac{2}{\lambda_n J_1(\lambda_n)} J_0(\lambda n(x))$ where $\lambda_1, \dots \lambda_n$... are positive roots of $J_0(x) = 0$