Sem-VI (CBSGIS) = PC = II 2-11-16

QP Code: 21702

(3 Hours)

MICAL CAMPUS, IN [Total Marks: 70

- 1. Answer the following. Question 1-11 carry one mark each and questions 12-13 carry 2 marks each
 - 1. Give an example (structure and name) of a drug that is a nucleic acid analog with its therapeutic use.
 - 2. Which is the weakest among all the intermolecular bonding forces.
 - 3. What is a quaternary structure of a protein. Give an example
 - 4. An alpha helix is an example of a protein primary structure. True or False. Correct if False.
 - 5. Give an example of a monoclonal antibody's therapeutic use
 - 6. Which enzyme kinetic parameter/s do competitive inhibitors affect.
 - 7. Give the structure and name of a drug that is an antibacterial due to inhibition of a bacterial enzyme
 - 8. Give an example of a receptor that has autocatalytic activity.
 - 9. The DNA double helix is an example of DNA tertiary structure. True or False. Correct if False.
 - 10. Name a DNA intercalating agent and give its therapeutic use
 - 11. Cis and trans terms imply optical somerism. True or False. Correct if False.
 - 12. Give one example of a CYP+50 catalyzed metabolic reaction using a drug/chemical of your choice.
 - 13. Proteins can be drug targets or drugs themselves. Explain the statement
- (a) Discuss any four intermolecular forces involved in drug-receptor binding
 - (b) Answer the following (any two)
 - i. Explain the following terms:
 - a) Monoclonal antibodies
 - b) Proteomics
 - ii. Give the structure and chemical name of a sulfonamide used for ulcerative colitis
 - iii. Classify sulfonamides on the basis of duration of action giving one example from each class

[TURN OVER

LO-Con.: 446-15.

	(c)	Give the structures and names of any three degradation products of penicillins	3
		OR	
	(c)	Fill in the blanks:	3
	(0)	i. Introduction of ——— group which is electron ———,	3
		at the α -carbon leads to acid stability in penicillins	-
		ii. Introduction of a fluoro group at ———— position increases	1
		the potency of quinolones	0
		iii. Increasing the ———— is responsible for rendering the	4
		penicillins β-lactamase resistant.	
3.		Classify receptors and give one example from each class.	4
	(b)	Answer in brief:	4
		i. Explain the following terms.	
		a. Agonist	
		b. Potency	
		ii. Give the structure, generic name and use for the following:	
		1-Cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl) quinoline-	
		3-carboxylic acid	
	(c)	Outline the various steps involved in the synthesis of primaquine.	-3
4.	(a)	Name any three Phase II drug metabolizing enzymes and give an	4
		example of a reaction catalyzed by any one of them.	
		Describe the synthesis of ampicillin OR cloxacillin	3
	(c)	Give reasons for the following:	
		i. Drugs should have appropriate solubility and partition	2
		coefficient for oral administration.	
		ii. Sparflexacin is not phototoxic	1
		iii. Co-trimoxazole is an example of synergism	1
~			
5.	(a)	Discuss SAR of tetracycline with respect to position 5 and 6 of the	3
	(1-)	ring.	
	(0)	Outline the synthesis of PAS along with reagents and reaction	3
	(0)	Conditions.	•
	(6)	Write a note on artemisinin and improvements made to artemisinin	3
17		OR	

QP Code: 21702

LO-Con.: 446-15.