QP Code: 31466

(3 Hours)

[Total Marks: 80

NR	: 1) Question no. 1 is compulsory, maximum duration 3hrs	
т.р.	. 1) Question no. 1 is compulsory, maximum duration 3nrs	^
	2) Solve any three from remaining five questions.	2:
	3) Assume suitable data if required.	69: K
	4) Use of IS-1343 is permitted.	1 1
1. A		76.0
(a)	The grade of concrete for prestressed members should be in the range of	1
	i.M-20 to M-30 ii. M-80 to M-100 iii. M-30 to M-60	
(b)	In a concrete beam subjected to prestress, dead and live loads the pressure line	1
	i.shifts more at centre span and zero at support ii. Coincide with the cable line	
	iii.shifts uniformly towards top of beam as load increases	
(c)	Short term deflection of a prestressed beam can be computed using	1
	i.three moment theorem ii. Mohr's theorem iii. Moment distribution method	
(d)	Failure of under reinforced prestressed concrete beam can be identified by	1
	i.very few cracks near centre of span ii. Very little deflections iii.large number of cracks with large deflections	
(e)	For a bonded prestressed concrete beam at failure the effective reinforcement ratio	1
	according to IS:1343 is limited to a value of	
	i.0.15 ii. 0.4 iii. 0.25	
(f)	Horizontal prestressing of concrete beams	1
	i.has no effect on the shear strength ii. Increases the shear strength iii. Reduces the	·
	shear strength	
(g)	Transfer of prestress in pretensioned members is due to	1
	i.shear resistance ii. Bearing on end face iii. Bond between concrete and steel	
(h)	Stress distribution in the anchorage zone of a post tensioned PSC beam is	1
	i.biaxial ii. Uniaxial iii. triaxial	

i.range of stress at top fibre ii.range of stress at bottom fibre iii. Range of stress at top

The clear cover to cables in a PSC post tensioned girder should not be less than

[TURN OVER

FW-Con.12169-16.

and bottom fibre

(i) The minimum prestressing force is a function of

MIRC

2

i.50mm ii. 35mm iii. 50mm

- 1.B Write short note on advantages of prestressed concrete 5
- 1.C Write short note on advantages of continuous members in PCS

2.

- (a) A rectangular concrete beam of c/s 250mm*350mm is prestressed by means of 15 10 wires of 6mm diameter located 60mm from the bottom of the beam and 5 wires of dia. 8mm 50mm top. Assuming prestress in steel as 1000N/mm². Calculate the stresses at the extreme fibres of the mid span section, when the beam is supporting its own weight over a span of 5m. If a u.d.l of 5KN/m is imposed. Determine the maximum working stress in concrete.
- (b) A prestressed concrete beam with rectangular section 120mm by 300mm deep 10 supports a u.d.l of 5KN/m including self wt. of the beam. The effective span is 6m.

 The beam is concentrically prestressed by a cable carrying a force of 180KN. Locate the position of pressure line in the beam.

3.

- (a) Write short note on various losses in pretensioning and post tensioning?
- (b) A prestressed concrete beam having size 230×400mm is prestressed with wires

 (area = 320mm2) located at a constant ecceptricity of 55mm and carrying an initial stress of 1200N/mm2 the span of beam is 10m. Calculate the percentage loss of stress in wires if
 - a) The beam is pretensioned
 - b) The beam is post tensioned

Use the following data: S

Es = 210 KN/mm² and Ec = 35KN/mm² relaxation of steel stress = 5% of initial stress. Shrinkage of concrete = 300×10 -6 for pretensioning and 200×10 -6 for post tensioning creep coefficient =1.6 slip at anchorage = 1mm frictional co-efficient for wave effect = 0.0015/m

4.

(a) A prestresssed concrete beam having a rectangular section 100mm wide and 200mm 15 deep spans over 3m. The beam is prestressed by a straight cable containing five wires

ITURN OVER

5

05

05

10

of 5mm diameter stressed to 1100N/mm² at an eccentricity of 40mm. Assume the PAWEL Ob Ob 2016 9: A2: AT modular ratio $\alpha = 6.2$. If the modulus of elasticity of concrete is 34KN/mm2 and the modulus of rupture is 4N/mm², calculate the maximum deflection of the beam at the following stages:

- (a) prestress + self wt. of the beam
- (b) prestress + self wt.+ imposed load of 8 KN/m
- (c) Cracking load
- (d) 1.46 times the working load
- Explain safe cable zone in prestressed concrete members (b)
- Determine equivalent upward load and hence locate pressure line, is It concordant 20 5. cable? If not make concordant by linear transformation. The beam is symmetrically prestressed by a cable carrying 4500KN prestressing force.

- Explain the stress distribution in the end block (a)
- State and explain principle of prestressing. What is difference between service and (b) transfer stage?
- Calculate the efficiency of he sections: (c) I-section top frange: 400×200mm bottom flange 200×200mm web: 100×600mm. overall depth=1000mm

Tee section: flange 600×250mm web 750×100mm overall depth= 1000mm

FW-Con.12169-16.