QP Code: 31256

		(3 hours) Total Marks: 80	
N.B.	2	2. Attempt any three questions out of remaining. 3. Assume suitable data if necessary and justify the assumptions. 4. Figures to the right indicate full marks.	
Q1	Α	For the given causal sequences $x(n) = \{8, 9, 2, 3\}$ and $h(n) = \{4, 3, 6\}$ find the	05
		cross correlation.	
	В	State the condition for stability of LTI system and determine for the given	05
		discrete time system $h(n) = (0.3)^n u(n) + 5\delta(n)$, is stable or not.	
	C	Differentiate IIR and FIR systems.	05
	D	For the causal signal $x(n) = \{2, 2, 4, 4\}$ compute four point DFT using DIT-	05
		FFT.	
Q2	A	Check whether following system $y(n) = 2x(n-1) + x(2n)$ is:	1(
		1. Linear or non Linear 2. Causal or non-causal	
		3. Time variant or Time invariant 4. Static or Dynamic	
	В	Draw the radix 2 DIT flow graph and find the DFT of the sequence $x(n) = \{10, \dots, n\}$	10
		11, 8, 5} using FFT flow graph.	
Q3	А	For $x(n) = \{2 \ 3 \ 4 \ 5 \ 1 \ 3\}$, plot the following Discrete Time signals:	10
		1.) $x(n-1)$ 2.) $x(n)u(-n)$ 3.) $x(n-1)u(-n-1)$	
		4.) $x(-n)u(n)$ 5.) $x(2n)$	
	В	Determine whether or not the following signals are periodic.	1(
		If periodic specify its fundamental period.	
		1. $x(n) = \sin(0.25\pi n + 0.4)$	
		2. $x(n) = \cos(0.5n\pi) + \sin(0.25n\pi)$	
Q4	A	For the FIR digital filter with impulse response given by	1(
		$h(n) = 2\delta(n) + 3\delta(n-1) + 4\delta(n-3) + \delta(n-4)$ sketch the magnitude response of the	
		filter.	
	В	State any five DFT properties.	10

[TURN OVER]

QP Code: 31256

- 2 ---

Q5	A	Find circular convolution of $x_1(n) = \{5, 6, 2, 1\}$ and $x_2(n) = \{3, 2, 1, 4\}$ by	10
		computing DFT of $x_1(n)$ and $x_2(n)$.	
	В	Compute Linear Convolution of causal sequence $x(n) = \{7, 6, 4, 5, 2, 4, 5, 2, 3\}$	10
		and h(n)={1 2 3 1} using fast overlap save method.	
Q6	Α	Write a detailed note on Carls' Correlation Coefficient Algorithm.	10
	В	Write a detailed note on DSP Processor and Architecture.	10