15°

QP Code: 28611

(3 hours)

Total Marks: 80

- N.B. (1) Question No.1 is compulsory.
 - (2) Attempt any three questions out of the remaining five questions.
 - (3) Figures to right indicate full marks.

Q.1 (a) Prove that
$$\int_{0}^{1} \frac{dx}{\sqrt{-\log x}} = \sqrt{\pi}$$
 [3]

(b) Solve
$$\frac{d^3y}{dx^3} - 5\frac{d^2y}{dx^2} + 8\frac{dy}{dx} - 4y = 0$$
 [3]

(c) Prove that
$$\Delta \nabla = \nabla \Delta$$
 [3]

(d) Solve
$$[x y \sin(xy) + \cos(xy)] y dx + [x y \sin(xy) - \cos(xy)] x dy = 0$$
 [3]

(e) Change to polar coordinates and evaluate
$$\int_{0}^{1} \int_{x}^{\sqrt{2x-x^2}} (x^2 + y^2) dx dy$$
 [4]

(f) Evaluate
$$\int_{0}^{1} \int_{0}^{x} (x^2 + y^2) x \, dy \, dx$$
 [4]

Q.2 (a) Solve
$$(1+y^2)dx = (e^{\tan^{-1}y} - x)dy$$
 [6]

(b) Change the order of integration and evaluate

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \frac{e^y}{(e^y+1)\sqrt{1-x^2-y^2}} \, dy \, dx$$
 [6]

(c) Prove that
$$\int_{0}^{\infty} \frac{e^{-x} - e^{-\alpha x}}{x \sec x} dx = \frac{1}{2} \log \left(\frac{\alpha^2 + 1}{2} \right)$$
 [8]

Q.3

(a) Evaluate
$$\int_{1}^{e} \int_{1}^{\log z} \log z \, dz \, dy \, dx$$
[6]

(b) Find the total area of the curve
$$r = a \sin 2\theta$$
 [6]

(c) Solve
$$x^2 \frac{d^3 y}{dx^3} + 3x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = x^2 \log x$$
 [8]

[TURN OVER

- Q.4
- Show that the length of the arc of the curve $ay^2 = x^3$ from the origin to the point whose abscissa is b is $\frac{8a}{27} \left[\left(1 + \frac{9b}{4a} \right)^{3/2} 1 \right]$ [6]
- (b) Solve $(D^2 D 2)y = 2\log x + \frac{1}{x} + \frac{1}{x^2}$ [6]
- (c) Apply Runge-kutta Method of fourth order to find an approximate value of y for $\frac{dy}{dx} = x$ y with $x_0 = 1$, $y_0 = 1$ at x = 1.2 taking h = 0.1
- Q.5 (a) Solve $(x^2y 2xy^2)dx (x^3 3x^2y)dy = 0$ [6]
 - (b) Using Taylor series Method obtain the solution of following differential equation $\frac{dy}{dx} = 2y + 3e^x \text{ with } y_0 = 0 \text{ when } x_0 = 0 \text{ for } x = 0.1, 0.2$ [6]
 - (c) Find the approximate value of $\int_{0}^{4} e^{x} dx$ [8] by i) Trapezoidal Rule , ii) Simpson's $1/3^{rd}$ Rule
- Q.6 (a) In a circuit containing inductance L, resistance R, and voltage E, the current I is given by $L\frac{di}{dt} + Ri = E$. Find the current I at time t if at t = 0, i = 0 and L, R, E [6] are constants.
 - (b) Evaluate $\iint_{R} \frac{dx \, dy}{\left(1 + x^2 + y^2\right)^2}$ over one loop of the lemniscate $\left(x^2 + y^2\right)^2 x^2 y^2$ [6]
 - Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and y + z = 4 [8]