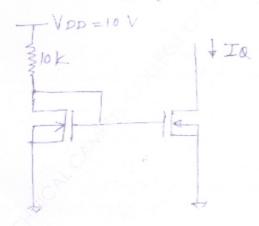
Q.P. Code: 545702

(3 Hours)

Total Marks: 80


N.B.: (1) Question No.1 is compulsory.

- (2) Solve Any Three questions from remaining Five questions.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary and mention the same in the answer sheet.

1. Solve any Five:

20

- (a) Define CMRR. Derive the expression for CMRR of a BJT differential amplifier.
- (b) Draw the circuit diagram of an inverting amplifier using Op-Amp and derive expression for its voltage gain.
- (c) Differentiate between small signal BJT and power BJT.
- (d) For the circuit shown below find IQ.

For both MOSFETs $V_{TN} = 1V$, $K_n = 100 \mu A/V^2$.

- (e) Explain working of Integrator using Op-Amp.
- (f) For differential amplifier with $A_d = 100$ and $A_c = 0.1$. If two sets of inputs are applied as given below.

(i)
$$V_1 = 100 \mu V$$
, $V_2 = 80 \mu V$

(ii)
$$V_1 = 200 \mu V, V_2 = 160 \mu V$$

Determine output voltage in each case.

2. (a) Determine the corner frequency and maximum gain of the MOSFET amplifier shown in figure.

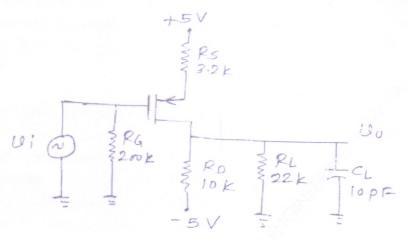


Fig. 2a

The transistor parameters are $V_{TP} = -2V$, $K_P = 0.25$ mA/V² and $\lambda = 0$.

(b) For the circuit in Fig. 2b, Find midband gain and corner frequencies. 10

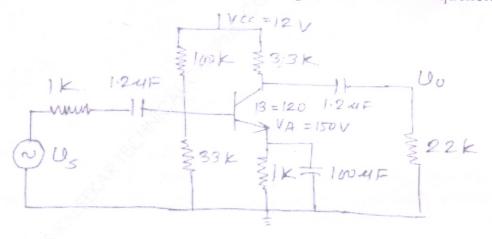
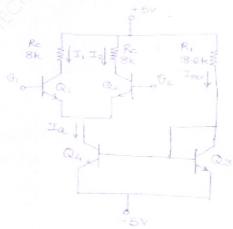
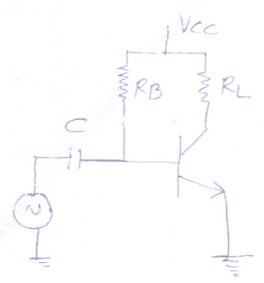



Fig. 2b

- 3. (a) The cascode circuit shown in Fig. 3a has parameters $V^+ = 12V$, $V^- = 0V$, 10 $R_1 = 58.8 k\Omega$, $R_2 = 33.3 k\Omega$, $R_3 = 7.92 k\Omega$, $R_C = 7.5 k\Omega$, $R_S = 1 k\Omega$, $R_E = 0.5 k\Omega$ and $R_L = 2 k\Omega$. The transistor parameters are $\beta = 100$, $V_{BE} = 0.7 V$, $VA = \infty$, $C\pi = 24 pf$ and Cu = 3 pf.
 - (i) Determine upper 3dB frequencies corresponding to the input and output portions of the equivalent circuit.
 - (ii) Calculate small signal midband voltage gain.



(b) Determine the differential and common-mode input resistances of a differential amplifier shown in figure below:

The transistor parameters are $V_{BE(ON)} = 0.7V$, $\beta = 100$ and $V_A = 100V$.

- 4. (a) Draw a neat circuit diagram and explain working of the improved 3 transistor (MOSFET) current source. Derive the relationship between the output current and reference current.
 - (b) Draw the circuit diagram for an inverting summing amplifier using operational amplifier. Derive the relationship for its output voltage V₀ for four inputs V₁, V₂, V₃ and V₄.
- 5. (a) Explain Class B operation of power amplifiers. What is crossover 10 distortion? How is it eliminated.
 - (b) For the circuit shown in fig. 5b, the transistor parameters are $\beta=100$, $P_{DMAX}=2.5$ W, $V_{CEMAX}=25V$, $I_{CMAX}=500 mA$. If $R_L=100\Omega$ then find Vcc and R_B to deliver maximum power to the load. With the obtained values of Vcc and R_B calculate the maximum undistorted ac power that can be delivered to R_L .

- 6. Write short notes on any Four:
 - (a) Zener Shunt Regulator
 - (b) Power MOSFET
 - (c) Active Filters
 - (d) Multistage Amplifiers
 - (e) Millers Theorem.

20