O.P. Code: 29249

- Marks :100

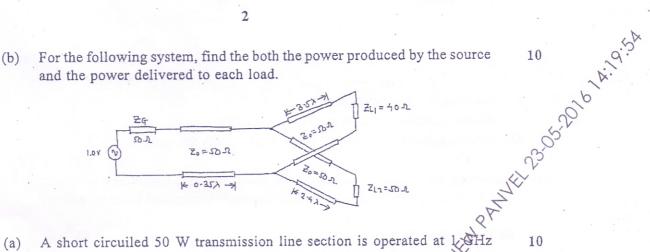
 Solution of remaining six questions.

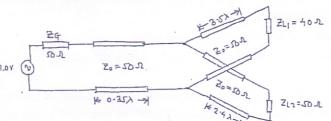
 Assume suitable data wherever required but justify the same.

 1. (a) Assuming the dielectric and conductor losses in transmission line are small. (i.e. $G << \omega C$ and $R << \omega L$), show that propagation constant k can be written as $k = \alpha + j\beta = \frac{1}{2} \left(\frac{R}{Z_0} + GZ_0 \right) + j\omega \sqrt{LC}$ Where $Z_0 = \sqrt{L/C}$ fs the of loss

as
$$k = \alpha + j\beta = \frac{1}{2} \left(\frac{R}{Z_0} + GZ_0 \right) + j\omega \sqrt{LC}$$

- Show that the maximum value of normalized resistance is ownerically equal to the voltage standing wave ratio i.e. $r_{max} = \rho$
- You are required to build a low pass butterwort fixer that provides an attenuation value of atleast 50 dB at $f = 1.5 f_{3dB}$. What is filter order? How many components (inductors and capacitors) are required to realize this filter?
- Explain the current flow in pn junction and give the expression for I diff in (d) terms of diffusion constant and Vdiff ip terms of doping concentration.
- Starting from definition of time averaged power, obtain expression for the power absorbed by the load for ossless and lossy transmission line.
 - (b) The electric wave field of a positive z-travelling wave in a medium with relative dielectric constant of = 4 and with frequency of 5 GHz is given by Ex =Eox cos (wt - kz)(V/m
 - (i) Find he magnetic field it $Eox = 10^6$ v/m
 - (ii) Determine phase velocity and wavelength.
 - (iii) Compute the spatial advance of the travelling wave between time intervals $t_1 = 3\mu s$ and $t_2 = 7\mu s$
- An N =3, thebyshev bandpass filter is be designed with a 3dB passband ripple for a communication link. The center frequency is at 2.4 GHz and filter was to meet a bandwidth requirement of 20%. The filter has to be inserted into a 50 Ω characteristic line impedance. Find the inductive elements The attention of the at and plot the attenuation response in the frequency range of 1 to 4 GHz.


[TURN OVER


5

10

10

20

- A short circuiled 50 W transmission line section is operated at LEHz and possesses a phase velocity of 75% of the speed of light. Use both the analyical and the smith chart approach to determine the shortest light required to obtain an 4.7 nH inductor
 - Explain different filter parameters with generic attenuation profile diagram. (b)
- Explain high frequency resistors, capacitors and inductors by giving 5. (a) 10 related equations and wave forms.
 - Explain stocky contact with the help of energy bond diagram for 10 (b)
 - (i) metal and semiconductor do not interact
 - (ii) metal semiconductor contact.
- Explain the design procedure of small signal BJT amplifier. (DC circuit 10 6. (a) design and RF circuit design)
 - For two pn-diodes with abrupt function, one of which is made of Si and 1.0 (b) another is made of GaAs, with $N_A = 10^{17}$ cm⁻³ and $N_D = 2 \times 10^{14}$ cm⁻³ in both cases:
 - (a) Find the barrier voltage.
 - (b) Find the maximum electric field and the space charge region width.
 - (c) Plot the spage charge, potential, and electric field distribution along the dioderaxis.
- Write short note of following:
 - One to one mapping between the normalized impedance plane and the reflection coefficient plane.
 - (b) Chip components.
 - Parallel and series connections.
 - Microstrip transmission lines.

GE-Con.10850-16.