QP Code: 29718

Time: 3 hrs

Marks: 100

NOTE:

- 1) Question No. I is compulsory.
- 2) Attempt any four questions from the remaining Six questions
- 3) Assumptions made should be clearly stated.
- 4) Assume any suitable data wherever required but justify the same.

01

20

- a) Find y(n) using frequency domain analysis if $x(n) = \{1, 2, -1\}$ and $h(n) = \{3, 2\}$
- b) Identify the following filters based on their passband by sketching their frequency response $h(n) = \{1, -0.5\}$
- c) Obtain a digital filter transfer function $H(\omega)$ by applying Impulse invariance transformation on the analog TF

 $H_a(s) = \frac{s+2}{s^2+4s+3} \text{ Use } f_s = 1Ksa/sec$

d) Find convolution of $x_1(n) = \{1, 2, 3, 4\}$ with $x_2(n) = \{5, 6, 7, 8\}$ when both the signals are periodic

02

- a) Determine 8 point FFT for a continuous time signal using DIT FFT algorithm $x[n] = \{1,2,1,2,02,1,2\}$ 10
- b) $x(n) = \{1 + 5j, 2 + 6j, 3 + 7j, 4 + 8j\}$.
 - i. Find DFT X(K)
 - ii. Using the results above and not otherwise find DFT of $x_1(n) = \{1,2,3,4\}$

Q3

- a) Perform circular convolution and circular crosscorrelation of $x_1(n) = \cos \frac{2\pi n}{N}$ with $x_2(n) = \sin \frac{2\pi n}{N}$ $0 \le n \le N-1$
- b) One of the zeros of an anti symmetric FIR filter is at 0.5∠60°. Show the locations of other zeros. What is the minimum order of this filter? Also find the transfer function and impulse response of this filter
 10

Q4

- a) Consider the sequence $x[n] = 4\delta(n) + 3\delta(n-1) + 2\delta(n-2) + \delta(n-3)$. Let X(K) be the six point DFT of x(n). Find the sequence w(n) that has six point DFT W(K) such that $W(K) = Re\{X(K)\}$
- b) Determine parallel and cascade form realization of

10

10

$$H(Z) = 0.7 \frac{1 - 0.36z^{-2}}{(1 + 0.1z^{-1} - 0.72z^{-2})}$$

Q5

a) The desired response of a low pass filter is

10

H_d(
$$\omega$$
) = $e^{-j3\omega}$ $-\frac{3\pi}{4} \le \omega \le \frac{3\pi}{4}$
= 0 $\frac{3\pi}{4} \le |\omega| \le \pi$

Determine the frequency response $H(e^{j\omega})$ for M=7 using a Hamming window

[TURN OVER

QP Code: 29718

	b)) Find poles of a low pass Butterworth filter for N=3. Sketch location of poles plane. Also find normalized transfer function.	in s
Q 6			
:	a)	Explain the need of a low pass filter with a decimator and mathematically prove that	
		$\omega_{y} = \omega_{x} D$	10
]	b)	Explain Goertzel's Algorithm	
			10
07	TX/	rite notes on	
Q'			26
4		Interpolation process	
1	b)	Chirp Z Algorithm	
		Adaptive echo cancellation	
,	1	Frequency sampling realization of FIR filters	