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Abstract—The idea of having a biped robot walking like a 

human is found to interesting in many aspects. Biped is a 

multi-jointed mechanism that performs a human’s motions. It 

seems more difficult to analyze the behavioral character of 

walking robot due to the complexity of mathematical 

description involved. This work is focused on developing a 

methodology for deriving mathematical modeling of a biped 

robot. The work is aimed to build the lower side, the locomotion 

part of a biped robot. The model used consists of 5-links which 

are connected through revolute joints. The identical legs have 

hip joint, knee joints and ankle joint. The Kinematical model is 

obtained using D - H Technique. It couples a design 

considerations and simplicity of design to provide inverse 

kinematics analysis of 11 degree-of-freedom (DOF) biped robot. 

Lagrangian formulation is applied to obtain dynamic model of 

robot. MAPLE software is used for mathematical modeling. 

The trajectory planning is done in Matlab for kinematic 

analysis and robot’s motions. By applying it, the user specific 

walking parameters, joint trajectories of the robot are 

computed. The parameters for these motions are found in 

simulation, under a criterion of stability of walking. Simulations 

are done in Matlab software to test the behavior of the 

humanoid. The results show that the proposed motions give an 

efficient and stable walking of the robot. This method presents a 

simple and efficient procedure for finding the joint solution of 

bipeds. 

 
Index Terms—Degree of freedom 

(DOF),Denavit–Hartenberg(D-H)parameters, Jacobian, 

Lagrangian. 

I. INTRODUCTION 

From ancient times, man has tried to create the mechanism 

that resembles the human body. Bipedal locomotion involves 

a large number of degrees of freedom. In the last decades we 

have seen a rapid growth in use of Humanoid Robotics, 

which leads to an autonomous research field. Humanoid 

robots are used in all situations of human’s everyday life, 

cooperating with us. They will work in services, in homes 

and hospitals, and they are even expected to get involved in 

sports. Another important fact about today's and especially 

tomorrow’s humanoid robots resembles human-like in their 

shape and behavior. The research on humanoid biped robot 

includes various areas such as mechanical design, 

mathematical modeling. Besides this, there are many 

problems that involve kinematics analysis, dynamic analysis. 

All this makes the study of bipedal robot a complex subject 

.The design for range of motion of each joint is same as 

standard human so that a humanoid robot performs human 

tasks. 

In this paper, we proposed a models by viewing the 

kinematic chain of a leg of a biped in forward order. This 

paper is organized as follows: An outline of the mechanical 

design of the developed biped robot is given in Section 2. The 

kinematics for the proposed humanoid robot is obtained 

using  

 

theDenavit‐Hartenberg convention in Section 3. The jacobian 

matrix which is prerequisite for dynamics is described in 

Section 4. The discussion about the dynamic model in the 

Sagittal and Frontal planes using Lagrange equations is in 

Section 5. Section 6 presents validation of kinematic and 

dynamic model by simulation .Finally, Section 7 presents 

some important conclusions for biped robot. 

II. MECHANICAL DESIGN 

The design of biped is based on human body in terms of 

ratios, body proportions, and range of motion. This paper 

propose to have sufficient DOF to imitate human motion. The 

model used consists of 5-links which are connected through 

revolute joints, 2-links for each leg and 1-link for torso. It is 

considered as a robot with waist or torso, linking two legs 

which are linked together through hip joints to emulate a 

human’s activities. The identical legs have hip joint between 

torso and thigh, knee joints between the thigh and shank, 

ankle joint between shank and foot, and a rigid body forms 

the torso. The joint structure of the biped has eleven degrees 

of freedom, 5 DOF for each leg and 1 DOF for waist or torso. 

DOF for waist is shared between legs. The Hip joint has 

2-DOF, which allows it motion in the sagittal and the lateral 

plane. The range of motion in the sagittal plane is between 

+70º to -50º and +50º and -60º in the lateral plane. The Knee 

joint has 1-DOF, which allows it motion in the sagittal and 

the lateral plane. The mobility for the knee joint is +140º in 

the sagittal plane. The ankle joint has 2-DOF, which allows it 

motion in the sagittal and the lateral plane. The range of 

motion in the sagittal plane is between +70º to -50º and +50º 

and -60º in the lateral plane.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: CAD model of biped 
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Servos are mounted on the biped robot serves as actuators 

for the system. One servo is attached to torso. On each leg, 

two servos are attached to the hip, one servo is attached to the 

knee and two servos are attached to the ankle. The 

mechanical design of the bipedal robot is modular, making it 

easy to change and replace parts. The frameworks of biped 

will be fabricated from acrylic in order to obtain light weight, 

and a wide range of motion. 

III. KINEMATIC MODEL 

Kinematic model depending upon above planned 

movements, can be formulated. Kinematic analysis is based 

on the basic equation of the geometric model that aids in 

determining the position and orientation of a foot with a 

reference to torso for known values of the joint variables of 

kinematic chain that compose the robot. Denavit-hartenberg 

formulation is used to model biped. Each part is considered as 

a link represented by a line along its joint axis and common 

normal to next joint axis. Coordinate system is attached to 

each link illustrating relative position amongst various links. 

A 4×4 transformation matrix relating i+1 frame to i frame is 

given by, 

 
ⁱˉ¹Hᵢ 

= 

cosθᵢ     − sinθᵢ cosαᵢ₋₁         sinθᵢ sin αᵢ₋₁      aᵢ₋₁cosθᵢ 
sinθᵢ          cosθᵢ cosαᵢ₋₁    − cosθ sin αᵢ₋₁      aᵢ₋₁ sinθᵢ
      0                     sin αᵢ₋₁                   cosαᵢ₋₁                   dᵢ

       0                                 0                               0                    1

  

…….. (1) 

Where,  

θᵢ = Rotation angle is angle between Xᵢ₋₁ and Xᵢ measured 

about Zᵢ. 

αᵢ₋₁ = Twist angle is angle between lines along joints i-1 and 

i measured about common perpendicular X ᵢ₋₁. 
Aᵢ₋₁ = link length is the distance between the lines along 

joints i-1 and i along common perpendicular. 

Dᵢ = link offset is distance along Zᵢ from line parallel to Xᵢ₋₁ 
to the line parallel to Xᵢ and are called as Denavit-hartenberg 

(D-H) parameters. 

Equation 1 is homogeneous transformation matrix 

indicating position and orientation of each joint. An 

origin(X₀, Z₀) is established at the torso and each joint has a 

coordinate frames are attached following D-H definition. For 

the biped robot with all revolute joints, we have 

formulated  θᵢ ,αᵢ₋₁ ,aᵢ₋₁ ,dᵢ .Table 1 and Table 2 lists D-H 

parameter used to solve transformation matrix. 

Transformation matrix of each joint can be obtained by 

substituting D-H parameters into Equation 1. 

 

 
Fig. 2:  Frame assignment 

Table1: Denavait-Hatenberg parameters for left leg 

 

i 𝛼ᵢ₋₁ 𝑎ᵢ₋₁ dᵢ θᵢ 
1 0 0 0 Ө₁ 
2 90 l₂ 0 Ө₂+90 

3 90 0 0 Ө₃ 
4 0 l₄ 0 Ө₄ 
5 0 l₅ 0 Ө₅ 
6 -90 0 0 Ө₆ 

 

Table2: Denavait-Hatenberg parameters for right leg 

 

i α ᵢ₋₁ aᵢ₋₁ dᵢ Өᵢ 

1 0 0 0 Ө₁ 
7 -90 l₇ 0 Ө₇+90 

8 -90 0 0 Ө₈ 
9 0 l₉ 0 Ө₉ 
10 0 l₁₀ 0 Ө₁₀ 
11 90 0 0 Ө₁₁ 

 

The continuous homogeneous transformation from ⁰H₁ to 

⁵H₆ transform ankle coordinate to base torso coordinate, 

shown in equation 2.Pose of ankle with respect to torso is 

given by, 

 
⁰H₆= ⁰H₁·¹H₂ ·²H₃ ·³H₄ ·⁴H₅ ·⁵H₆…….. (2) 

 

P=⁰H₆ =  

r₁₁   r₁₂   r₁₃  Px
r₂₁   r₂₂   r₂₃   Py
r₃₁  r₃₂    r₃₃   Pz
0      0        0       1

 …….. (3) 

 

Equation 3 provides solution of forward kinematics with 

matrix P being result. The translation vector Px,  Py,  Pz  
gives position of foot and orientation 

matrix 

r₁₁ r₁₂ r₁₃
r₂₁ r₂₂ r₂₃ 
r₃₁ r₃₂  r₃₃

 shows direction of foot. 

IV. JACOBIAN MATRIX 

In this we are interested to derive the velocity relationships 

that relate the linear and angular velocities of the end-effector 

to the joint velocities. We will find the angular velocity of the 

end-effector frame which gives the rate of rotation of the 

frame and the linear velocity of the origin. Then we relate 

these velocities to the joint velocities.Jacobian matrix forms 

the basic elements in building a dynamic model of biped 

walking. On the basis of motion i.e rectilinear or rotary, the 
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jacobian matrixes are divided as linear or revolutary. In this 

design, all joints are revolute, so general form of matrix can 

be written as, 

 

Jᵢ = 
Jνᵢ
Jωᵢ

 = 
Z¡₋₁ ×(On−O¡₋₁)

Z¡₋₁
 …….. (4) 

Masses are considered as two concentrated material points 

such as thigh, shin or leg. We can define the dynamic system 

as figure 3. 

 
Fig 3: Masses and joints for thigh and shin or legs. 

Each mass needs a jocobian matrix J₄ and J₆ means 

jacobian of thigh and shin. By separating this jacobian matrix 

into rectilinear and rotary elements, jacobian matrix can be 

written as shown below. Linear and rotary components of 
jacobian of thigh are given by, 
 

Jν₄ = [Z₀× (O₄c − O₀)     Z₁ × (O₄c − O₁)     Z₂ × (O₄c −
O₂)     Z₃ × (O₄c − O₃)     0     0]…….. (5) 

 

Jν₄ =[[ - l₄ c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)), - l₄ c(θ₃) (c(θ₁) 
s(θ₂) + c(θ₂) s(θ₁)), - l₄ c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)),- l₄ 
s(θ₃) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)), 0, 0],[   l₄ c(θ₃) (c(θ₁) c(θ₂) - 
s(θ₁) s(θ₂)),   l₄ c(θ₃) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)),   l₄ c(θ₃) (c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂)),- l₄ s(θ₃) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)), 0, 0],[ 

0, 0, 0, -  l₄ c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁))² -  l₄ c(θ₃) (c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂))², 0, 0]] 

 

Jω₄ = [Z₀    Z₁     Z₂     Z₃  0   0 ]…….. (6) 

Jω₄ =[[ 0, 0, 0, - c(θ₁) s(θ₂) - c(θ₂) s(θ₁), 0, 0],[ 0, 0, 0,   c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂), 0, 0][ 1, 1, 1,0, 0, 0]] 

 
Similarly, Linear and rotary components of jacobian of 

shin can be calculated as, 
 

Jν₆ = [Z× (O₆c − O₀)     Z₁ × (O₆c − O₁)     Z₂ × (O₆₄c −
O₂)     Z₃ × (O₆c − O₃)      Z₄ × (O₆c − O₄)       0]  

 

Jω₆= [Z₀    Z₁     Z₂     Z₃  Z₄   0 ] 
 

Where, 

Z₀= 
0
0
1
  

 

Z₁ = 

⁰H₁(1,3)

⁰H₁(2,3)

⁰H₁(3,3)

 = 
0
0
1
  

 

Z₂ =  

⁰H₂(1,3)

⁰H₂(2,3)

⁰H₂(3,3)

 =  
0
0
1
  

 

Z₃ =  

⁰H₃(1,3)

⁰H₃(2,3)

⁰H₃(3,3)

 =  
 − c(θ₁)s(θ₂)  −  c(θ₂)s(θ₁)

    c(θ₁)c(θ₂)  −  s(θ₁) s(θ₂)
0

  

 

Z₄ =  

⁰H₄(1,3)

⁰H₄(2,3)

⁰H₄(3,3)

 =  
 − c(θ₁) s(θ₂)  −  c(θ₂) s(θ₁)

 c(θ₁)c(θ₂)  −  s(θ₁)s(θ₂)
0

  

 

O₀ =  
0
0
0
  

 

O₁ =  

⁰H₁(1,4)

⁰H₁(2,4)

⁰H₁(3,4)

 = 
0
0
0
  

O₂ =  

⁰H₂(1,4)

⁰H₂(2,4)

⁰H₂(3,4)

 = 
0
0
0
  

 

O₃ = 

⁰H₃(1,4)

⁰H₃(2,4)

⁰H₃(3,4)

 = 
0
0
0
  

 

O₄ 
= O₄c =

 

⁰H₄(1,4)

⁰H₄(2,4)

⁰H₄(3,4)

 = 

 l₄ c(θ₃)(c(θ₁) c(θ₂)  −  s(θ₁) s(θ₂))
 l₄ c(θ₃) (c(θ₁)s(θ₂)  +  c(θ₂)s(θ₁))

 −l₄ s(θ₃)
  

 

O₆c =  

⁰H₆(1,4)

⁰H₆(2,4)

⁰H₆(3,4)

  

 

=[{l5 (c(θ₃) c(θ₄) (c(θ₁) c(θ₂)-s(θ₁) s(θ₂)) s(θ₃) s(θ₄) (c(θ₁) 
c(θ₂)s(θ₁) s(θ₂)))+ l₄ c(θ₃) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))},{l5 

(c(θ₃) c(θ₄) (c(θ₁) s(θ₂)+c(θ₂) s(θ₁))s(θ₃) s(θ₄) (c(θ₁) s(θ₂) + 

c(θ₂) s(θ₁))) +  l₄ c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁))},{- l5 (c(θ₃) 
s(θ₄) + c(θ₄) s(θ₃)) -  l₄ s(θ₃)}] 

 

V. LAGRANGE FORMULATION 

The aim to solve dynamics is to obtain equation of motion 

of system. Because of multiple degree of freedom system, it 

is difficult to obtain equation of motion. In this paper, 

principles of Lagrangian dynamics is used for determining 

the gait locomotion equations for obtaining the torque in each 

joint of the biped. By representing variables of system as 

generalized coordinate, we can write equation of motion for 

an n-DOF system using Euler-Lagrange Equation as, 

 
d

dt

∂L

∂q̇ᵢ
−

∂L

∂q ᵢ
= τᵢ…….. (7) 

 

L=K-P…….. (8) 

 

Where L is Lagrangian, K is kinetic energy and P is potential 

energy. 



International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 4, April 2015 

 

1156 

ISSN: 2278 – 7798                                        All Rights Reserved © 2015 IJSETR 

 

 

The kinetic energy of a rigid body is sum of two terms. 

K=
1

2
mvᵀv +

1

2
ωᵀIω…….. (9) 

 

The inertia tensor is required to be transferred into global 

coordinate, so equation 6 should be multiplied by rotational 

transfer matrix R. 

K=
1

2
mvᵀv +

1

2
ωᵀRIRᵀω                         …….. (10) 

 

Total kinetic energy is sum of each links. 

K=  
1

2
mᵢvᵢᵀvᵢ +

1

2
ωᵢᵀRᵢIᵢRᵢᵀωᵢ n

i=1                     …….. (11) 

 

By using the Jacobian matrix, the kinetic energy can be 

written as the function of the joint variables like Equation 12. 

K=
1

2
 q̇T   {mᵢ Jνᵢn

i=1  q ᵀJνᵢ q +

Jωᵢ(q)ᵀRᵢ(q)IᵢRᵢ(q)ᵀJωᵢ(q)} q ̇                      …….. (12) 

 

K=
1

2
 q̇T {m₄ Jν₄ q ᵀJν₄ q + m ₆Jν₆ q ᵀJν₆ q +

 Jω₄(q)ᵀR₄(q)I₄R₄(q)ᵀJω₄(q)+

Jω₆(q)ᵀR₆(q)I₆R₆(q)ᵀJω₆(q)}q̇…….. (13) 

 

Inertia matrix  D(q) can be given by equation 11 

D(q)= m₄ Jν₄ q ᵀJν₄ q + m ₆Jν₆ q ᵀJν₆ q +
 Jω₄(q)ᵀR₄(q)I₄R₄(q)ᵀJω₄(q)+

Jω₆(q)ᵀR₆(q)I₆R₆(q)ᵀJω₆(q)}   …….. (14) 

 

Kinetic energy can be written as, 

K =
1

 2
 q̇T D(q)q̇=

1

2
 dn

j=1 ᵢj(q))q̇i  qj̇ …….. (15) 

 

Where D(q) is 6×6 symmetric matrix. Equation 16shows its 

elements. 

D(q)=

 
 
 
 
 
 𝑑₁₁
∗
∗
∗
∗
∗

 𝑑₁₂
𝑑₂₂
∗
∗
∗
∗

𝑑₁₃
𝑑₂₃
𝑑₃₃
∗
∗
∗

  𝑑₁₄
𝑑₂₄
𝑑₃₄
𝑑₄₄
∗
∗

𝑑₁₅
𝑑₂₅
𝑑₃₅
𝑑₄₅
𝑑₅₅
∗

𝑑₁₆
𝑑₂₆
𝑑₃₆
𝑑₄₆
𝑑₅₆
𝑑₆₆ 

 
 
 
 
 

…….. (16) 

 

Potential Energy of leg is, 

P= m g h = m¡ gn
i=1 hci …….. (17) 

 

Lagrangian L is the function of the joint variables given by 

Equation 18. 

L= K- P =
1

 2
 q̇T D(q) q-̇P(q) =

1

 2
  𝑑ᵢ𝑛

𝑖=1
𝑛
𝑗=1 j(q))q̇i  qj̇ 

- 𝑚¡ 𝑔𝑛
𝑖=1 hci(q)…….. (18) 

 

The partial derivatives of the Lagrangian with respect to the 

velocity is, 

∂L

∂q̇k
=

∂

∂q̇k
 

1

2
  d

n

i=1

n

j=1

ij (q))q ̇i q ̇j −
∂

∂q̇k
 P q = 

 dkj(q)q̇jn
j=1                         …….. (19) 

 

Differential of equation 19 is,  
d

dt

∂L

∂q̇k
=

 dkjn
j=1 q j +

 
d

dt
 dkj q̇j =  dkjn

j=1 q j +n
j=1   

∂dkj

∂qi

n
i=1

n
j=1  q̇i qj̇                

…….. (20)  

The partial derivatives of the Lagrangian with respect to the 

position is 
∂L

∂qk
= 

1

2
  

∂ij

∂qk

n
i=1 

n
j=1 q̇i qj̇-

∂P

∂k
…….. (21) 

 

Euler-Lagrangian equation can be obtained by substraction of 

equation 21 from equation 20. 

 dkjn
j=1 q j +    

∂dkj

∂qi
−

1

2

∂dij

∂qk
 q̇i qj̇n

i=1
n
j=1 +

∂P

∂qk
=τk 

…….. (22) 

 

If we define the Christoffel symbols Cijk and gravity force 

gk(q)as in Equation and 

Cijk=
1

2
 
∂dkj

∂qi
+

∂dki

∂qj
−

∂dij

∂qk
 …….. (23) 

 

gk(q) =
∂P(q)

∂qk
…….. (24) 

 

Equations of motion are given by equation 25, 

 dkj(q)6
j=1 q j +   Cijk(q)6

i=1
6
j=1 q̇i q̇j + gk q =τk 

 …….. (25) 

 

The second term of equation 25,  Cijk(q)6
i=1

6
j=1 q̇i q̇jhas 

two meanings. When ij, term indicates centrifugal force. 

When ij, term indicates Coriolis Effect. Since the product 

of inertia is much smaller than moment of inertia, 

Corioliseffect can be disregarded. So the equations of motion 

can written as equation 26. 

 

τ₁=d₁₁θ̈₁+ d₁₂θ̈₂+ d₁₃θ̈₃+ d₁₄θ̈₄+ d₁₅θ̈₅+ d₁₆ θ₆̈+C₁₁₁θ̇1²+ 

C₂₂₁θ̇₂²+ C₃₃₁θ̇₃²+ C₄₄₁θ₄̇²+ C₅₅₁θ₅² + C₆₆₁θ₆² + g₁. 
 

τ₂=d₂₁θ̈₁+ d₂₂θ̈₂+ d₂₃θ̈₃+ d₂₄θ̈₄+ d₂₅θ̈₅+ d₂₆ θ₆̈+C₁₁₂θ̇1²+ 

C₂₂₂θ̇₂²+ C₃₃₂θ̇₃²+ C₄₄₂θ₄̇²+ C₅₅₂θ₅² + C₆₆₂θ₆² + g₂. 
 

τ₃=d₃₁θ̈₁+ d₃₂θ̈₂+ d₃₃θ̈₃+ d₃₄θ̈₄+ d₃₅θ̈₅+ d₃₆ θ₆̈+C₁₁₃θ̇1²+ 

C₂₂₃θ̇₂²+ C₃₃₃θ̇₃²+ C₄₄₃θ₄̇²+ C₅₅₃θ₅² + C₆₆₃θ₆² + g₃. 
 

τ₄=d₄₁θ̈₁+ d₄₂θ̈₂+ d₄₃θ̈₃+ d₄₄θ̈₄+ d₄₅θ̈₅+ d₄₆ θ₆̈+C₁₁₄θ̇1²+ 

C₂₂₄θ̇₂²+ C₃₃₄θ̇₃²+ C₄₄₄θ₄̇²+ C₅₅₄θ₅² + C₆₆₄θ₆² + g₄. 
 

τ₅=d₅₁θ̈₁+ d₅₂θ̈₂+ d₅₃θ̈₃+ d₅₄θ̈₄+ d₅₅θ̈₅+ d₅₆ θ₆̈+C₁₁₅θ̇1²+ 

C₂₂₅θ̇₂²+ C₃₃₅θ̇₃²+ C₄₄₅θ₄̇²+ C₅₅₅θ₅² + C₆₆₅θ₆² + g₅. 
 

τ₆=d₆₁θ̈₁+ d₆₂θ̈₂+ d₆₃θ̈₃+ d₆₄θ̈₄+ d₆₅θ̈₅+ d₆₆ θ₆̈+C₁₁₆θ̇1²+ 

C₂₂₆θ̇₂²+ C₃₃₆θ̇₃²+ C₄₄₆θ₄̇²+ C₅₅₆θ₅² + C₆₆₆θ₆² + g₆. 
…….. (26)

 

 

Element of inertia matrix is, 

d₁₁= (Ixx4 (c(θ₃) (1-l₄² l₅² ((l₅ (c(θ₃) c(θ₄) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁)) - s(θ₃) s(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) +  l₄ c(θ₃) (c(θ₁) 
s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄) (c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) +  l₄ c(θ₃) (c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) 
s(θ₃)) + l₄ s(θ₃))²/2)²)½ + l₄ l₅ s(θ₃) ((l₅ (c(θ₃) c(θ₄) (c(θ₁) 
s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ 
c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄) (c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄ 
c(θ₃) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  l₄²/2 - l₅²/2 + (l₅ (c(θ₃) 
s(θ₄) + c(θ₄) s(θ₃)) + l₄ s(θ₃))²/2)) - Iyx4 (s(θ₃) (1 - l₄² l₅² ((l₅ 
(c(θ₃) c(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄) (c(θ₁) s(θ₂) 
+ c(θ₂) s(θ₁))) + l₄ c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ 
(c(θ₃) c(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄) (c(θ₁) c(θ₂) 
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- s(θ₁) s(θ₂))) + l₄ c(θ₃) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 - l₄²/2 - 

l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) +  l₄ s(θ₃))²/2)²)½ -  l₄ l₅ 
c(θ₃) ((l₅ (c(θ₃) c(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄) 
(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) +  l₄ c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) 
s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄ c(θ₃) (c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) +  l₄ 
s(θ₃))²/2))). 

 

Similarly all other 

d₁₂,d₁₃,d₁₄,d₁₅,d₁₆,d₂₁,d₂₂,d₂₃,d₂₄,d₂₅,d₂₆,d₃₁,d₃₂,d₃₃,d₃₄,d
₃₅,d₃₆,d₄₁,d₄₂,d₄₃,d₄₄,d₄₅,d₄₆,d₅₁,d₅₂, d₅₃,d₅₄, d₅₅,d₅₆, d₆₁, 
d₆₂,d₆₃, d₆₄, d₆₅,d₆₆ can be found out. 

 

Each element of the Christoffel symbols is, 

 

C113=
1

2
 
∂d31

∂q1
+

∂d31

∂q1
−

∂d11

∂q3
 =  

∂d13

∂q1
−

1

 2

∂d11

∂q3
 

 

= ((Ixx4 (s(θ₃) (1 - l₄² l₅² ((l₅ (c(θ₃) c(θ₄) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁)) - s(θ₃) s(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ c(θ₃) (c(θ₁) 
s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄) (c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄ c(θ₃) (c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) 
s(θ₃)) + l₄ s(θ₃))²/2)²)½ - l₄ l₅ c(θ₃) ((l₅ (c(θ₃) c(θ₄) (c(θ₁) 
s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ 
c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄) (c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) +  l₄ 
c(θ₃) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  l₄²/2 - l₅²/2 + (l₅ (c(θ₃) 
s(θ₄) + c(θ₄) s(θ₃)) +  l₄ s(θ₃))²/2) +  l₄ l₅ s(θ₃) ((l₅ (c(θ₃) c(θ₄) 
(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁))) + l₄ c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) (l₅ (c(θ₃) s(θ₄) 
(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) + c(θ₄) s(θ₃) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁))) + l₄ s(θ₃) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) - (l₅ (c(θ₃) c(θ₄) - 
s(θ₃) s(θ₄)) + l₄ c(θ₃)) (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ s(θ₃)) 
+ (l₅ (c(θ₃) c(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄) (c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂))) + l₄ c(θ₃) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) (l₅ 
(c(θ₃) s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) + c(θ₄) s(θ₃) (c(θ₁) c(θ₂) 
- s(θ₁) s(θ₂))) + l₄ s(θ₃) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))) - ( l₄² l₅² 
c(θ₃) ((l₅ (c(θ₃) c(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄) 
(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) +  l₄ c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁))) (l₅ (c(θ₃) s(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) + c(θ₄) s(θ₃) 
(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ s(θ₃) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁))) - (l₅ (c(θ₃) c(θ₄) - s(θ₃) s(θ₄)) + l₄ c(θ₃)) (l₅ (c(θ₃) s(θ₄) 
+ c(θ₄) s(θ₃)) +  l₄ s(θ₃)) + (l₅ (c(θ₃) c(θ₄) (c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄ c(θ₃) (c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂))) (l₅ (c(θ₃) s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) + 

c(θ₄) s(θ₃) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄ s(θ₃) (c(θ₁) c(θ₂) - 
s(θ₁) s(θ₂)))) ((l₅ (c(θ₃) c(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) 
s(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) 
s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄ c(θ₃) (c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ 
s(θ₃))²/2))/(1 -  l₄² l₅² ((l₅ (c(θ₃) c(θ₄) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁)) 
 

Equation 17 is about potential energy which is function of 

joint angles and is given by, 

P = m₄ g (h₀-l₄c c(θ₂) c(θ₃)+m₆ g (h₀- c(θ₂)( l₄ c(θ₃)+l6c  

c(θ₃+ θ₄) 
 

P = (981 m₄ (h₀-l₄c c(θ₂) c(θ₃)))/100 + (981 m₆ (h₀- c(θ₂) (l6c  

c(θ₃+ θ₄) + l₄ c(θ₃))))/100 

 

Element of gravity force is given by, 

 

g₂=
∂P

 ∂q2
=(981 m₆ s(θ₂) (l6c  c(θ₃ + θ₄) + l₄ c(θ₃)))/100 + (981 

l4cm₄ c(θ₃) s(θ₂))/100 

 

Similarly each element of gravity force g₁, g₃, g₄, g₅, g₆ can 
be calculated. 
 

Torque required for yaw motion of torso is given by, 

 

τ₁= θ  ₁ ((Ixx4 (c(θ₃) (1 - l₄² l₅² ((l₅ (c(θ₃) c(θ₄) (c(θ₁) s(θ₂) + 

c(θ₂) s(θ₁)) - s(θ₃) s(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄c(θ₃) 
(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄) (c(θ₁) c(θ₂) - 
s(θ₁) s(θ₂)) - s(θ₃) s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄c(θ₃) 
(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + 

c(θ₄) s(θ₃)) + l₄s(θ₃))²/2)²)¹/² + l₄ l₅s(θ₃) ((l₅ (c(θ₃) c(θ₄) 
(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁))) + l₄c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) 
c(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂))) + l₄c(θ₃) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 - l₄²/2 - l₅²/2 + 

(l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄s(θ₃))²/2)) – Iyx4 (s(θ₃) (1 - l₄² 
l₅² ((l₅ (c(θ₃) c(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄) 
(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) 
s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄c(θ₃) (c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + 

l₄s(θ₃))²/2)²) ¹/²- l₄ l₅c(θ₃) ((l₅ (c(θ₃) c(θ₄) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁)) - s(θ₃) s(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄c(θ₃) (c(θ₁) 
s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄) (c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄c(θ₃) (c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) 
s(θ₃)) + l₄s(θ₃))²/2))). 

 

Torque required for rolling motion at hip joint is given by, 

 

τ₂= θ  ₁ ((Ixx4 (c(θ₃) (1 - l₄² l₅² ((l₅ (c(θ₃) c(θ₄) (c(θ₁) s(θ₂) + 

c(θ₂) s(θ₁)) - s(θ₃) s(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) +  l₄ c(θ₃) 
(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄) (c(θ₁) c(θ₂) - 
s(θ₁) s(θ₂)) - s(θ₃) s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) +  l₄ c(θ₃) 
(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + 

c(θ₄) s(θ₃)) +  l₄ s(θ₃))²/2)²)½ + l₄ l₅ s(θ₃) ((l₅ (c(θ₃) c(θ₄) 
(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁))) + l₄ c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) 
c(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂))) + l₄ c(θ₃) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  l₄²/2 - l₅²/2 + 

(l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ s(θ₃))²/2)) – Iyx4 (s(θ₃) (1 - 

l₄² l₅² ((l₅ (c(θ₃) c(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄) 
(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ c(θ₃) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) 
s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄ c(θ₃) (c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ 
s(θ₃))²/2)²)² - l₄ l₅ c(θ₃) ((l₅ (c(θ₃) c(θ₄) (c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁)) - s(θ₃) s(θ₄) (c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ c(θ₃) (c(θ₁) 
s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄) (c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄) (c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄ c(θ₃) (c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) 
s(θ₃)) + l₄ s(θ₃))²/2))). 

 

Torque required for pitching motion at hip joint is given by, 
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τ₃ =θ  ₁((Ixx4 (c(θ₃)(1 - l₄² l₅²((l₅ (c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + 
c(θ₂) s(θ₁)) - s(θ₃) s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁   + l₄ 
c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) 
c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - 
s(θ₁) s(θ₂))) + l₄ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 - 
l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) +  l₄ 
s(θ₃))²/2)²)½ + l₄ l₅ s(θ₃)((l₅ (c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + 
c(θ₂) s(θ₁)) - s(θ₃) s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ 
c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) 
c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - 
s(θ₁) s(θ₂))) +  l₄ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  
l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) +  l₄ 
s(θ₃))²/2)) - Iyx₄ (s(θ₃)(1 - l₄² l₅²((l₅ (c(θ₃) c(θ₄)(c(θ₁) 
s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁))) +  l₄ c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ 
(c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂))) + l₄ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) 
+ l₄ s(θ₃))²/2)²)½ - l₄ l₅ c(θ₃)((l₅ (c(θ₃) c(θ₄)(c(θ₁) 
s(θ₂) + c(θ₂) s(θ₁   - s(θ₃) s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁))) +  l₄ c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ 
(c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂    + l₄ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)))²/2 -  l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) 
+  l₄ s(θ₃))²/2))) + l₄ c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - 
s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) +  l₄ c(θ₃)(c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂)))²/2 -  l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + 
c(θ₄) s(θ₃)) +  l₄ s(θ₃))²/2)²)½) θ₁)) - s(θ₃) s(θ₄)(c(θ₁) 
s(θ₂) + c(θ₂) s(θ₁))) +  l₄ c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - 
s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) +  l₄ c(θ₃)(c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂)))²/2 -  l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + 
c(θ₄) s(θ₃)) +  l₄ s(θ₃))²/2)) - s(θ₅)(s(θ₃)(1 -  l₄² l₅²((l₅ 
(c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) 
s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ c(θ₃)(c(θ₁) s(θ₂) + 
c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄ 
c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -l₄²/2 - l₅²/2 + (l₅ 
(c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ s(θ₃))²/2)²)½ - l₄ l₅ 
c(θ₃)((l₅ (c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) 
s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ c(θ₃)(c(θ₁) s(θ₂) + 
c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄ 
c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ 
(c(θ₃) s(θ₄) + c(θ₄) s(θ₃   + l₄ s(θ₃))²/2)))). 
 

Torque required for pitching motion at knee joint is given by, 

 
τ₄= θ  ₄((c(θ₁) c(θ₂  - s(θ₁) s(θ₂))(s(θ₃)(c(θ₁) s(θ₂) + 
c(θ₂) s(θ₁)) (1 - l₄² l₅²((l₅ (c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + 
c(θ₂) s(θ₁)) - s(θ₃) s(θ₄)(c(θ₁) s(θ₂  + c(θ₂) s(θ₁    + l₄ 
c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) 
c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - 
s(θ₁) s(θ₂))) +  l₄ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  
l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ 
s(θ₃))²/2)²)½ - l₄ l₅ c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))((l₅ 
(c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) 
s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) +  l₄ c(θ₃)(c(θ₁) s(θ₂) 
+ c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) +  l₄ 
c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ 
(c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ s(θ₃))²/2)) + c(θ₂) 

s(θ₁)) - s(θ₃) s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ 
c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) 
c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - 
s(θ₁) s(θ₂))) + l₄ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  
l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) +  l₄ 
s(θ₃))²/2)²)½ -  l₄ l₅ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))((l₅ 
(c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) 
s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ c(θ₃)(c(θ₁) s(θ₂) + 
c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄ 
c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  l₄²/2 - l₅²/2 + (l₅ 
(c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ s(θ₃  ²/2))) + c(θ₂) 
s(θ₁))(1 -  l₄² l₅²((l₅ (c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁)) - s(θ₃) s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁    + l₄ 
c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) 
c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - 
s(θ₁) s(θ₂))) +  l₄ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  
l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ 
s(θ₃))²/2)²)½ + l₄ l₅ s(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))((l₅ 
(c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) 
s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ c(θ₃)(c(θ₁) s(θ₂) + 
c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂    + l₄ 
c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ 
(c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ s(θ₃))²/2)) - (c(θ₃)(c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂))(1 - l₄² l₅²((l₅ (c(θ₃) c(θ₄)(c(θ₁) s(θ₂) 
+ c(θ₂) s(θ₁)) - s(θ₃) s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + 
l₄ c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) 
c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - 
s(θ₁) s(θ₂))) + l₄ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  
l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ 
s(θ₃))²/2)²)½+ l₄ l₅ s(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))((l₅ 
(c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) 
s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁    + l₄ c(θ₃)(c(θ₁) s(θ₂) + 
c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) +  l₄ 
c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  l₄²/2 - l₅²/2 + (l₅ 
(c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ s(θ₃))²/2))). 
 
Torque required for pitching motion at ankle joint is given by, 

 

τ₅=θ  ₄ ((c(θ₁) c(θ₂) - s(θ₁) s(θ₂))+ l₄ c(θ₃)(c(θ₁) s(θ₂) + 
c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄ 
c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  l₄²/2 - l₅²/2 + (l₅ 
(c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ s(θ₃))²/2)²)½) + l₄ 
c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) 
c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - 
s(θ₁) s(θ₂))) + l₄ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  
l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ 
s(θ₃))²/2)²)½)(c(θ₅)(c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))(1 
-  l₄² l₅²((l₅ (c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) 
s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ c(θ₃)(c(θ₁) s(θ₂) + 
c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) +  l₄ 
c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  l₄²/2 - l₅²/2 + (l₅ 
(c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ s(θ₃))²/2)²)½ + l₄ l₅ 
s(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))((l₅ (c(θ₃) c(θ₄)(c(θ₁) 
s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁))) + l₄ c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ 
(c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂))) + l₄ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)))²/2 -  l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) 
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+  l₄ s(θ₃))²/2)) - s(θ₅)(s(θ₃)(c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁))(1 - l₄² l₅²((l₅ (c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁)) - s(θ₃) s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ 
c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) 
c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - 
s(θ₁) s(θ₂    + l₄ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 - l₄² 
- l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ 
s(θ₃))²/2)²)½ - l₄ l₅ c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))((l₅ 
(c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) 
s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ c(θ₃)(c(θ₁) s(θ₂) + 
c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄ 
c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  l₄²/2 - l₅²/2 + (l₅ 
(c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ s(θ₃))²/2))) - 
(c(θ₅)(c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))(1 - l₄² l₅²((l₅ 
(c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) 
s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ c(θ₃)(c(θ₁) s(θ₂) + 
c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂    + l₄ 
c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ 
(c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) +  l₄ s(θ₃))²/2)²)½ + l₄ l₅ 
s(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))((l₅ (c(θ₃) c(θ₄)(c(θ₁) 
s(θ₂) + c(θ₂) s(θ₁)). 
 

Torque required for rolling motion at ankle joint is given by, 

 

τ₆=θ̇₁ ((1 - l₄² l₅²((l₅ (c(θ₃) c(θ₄)(c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁)) - s(θ₃) s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁))) + l₄ 
c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ (c(θ₃) 
c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - 
s(θ₁) s(θ₂))) + l₄ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  
l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ 
s(θ₃))²/2)²)½) + (l₅ (c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂))) + l₄ 
c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)))²/2 -  l₄²/2 - l₅²/2 + (l₅ 
(c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) + l₄ s(θ₃))²/2)²)½) + ((Iyz6pi 
c(( l₄ c(θ₄) c(θ₅) s(θ₆) - l₄ s(θ₄) s(θ₅) s(θ₆) + l₅ c(θ₄)² 
c(θ₅) s(θ₆) + l₅ c(θ₅) s(θ₄)² s(θ₆))/(c(θ₄)² c(θ₅)² c(θ₆)² 
+ c(θ₄)² c(θ₅)² s(θ₆)² + c(θ₄)² c(θ₆)² s(θ₅)² + c(θ₅)² 
c(θ₆)² s(θ₄)² + c(θ₄)² s(θ₅)² s(θ₆)² + c(θ₅)² s(θ₄)² s(θ₆)² 
+ c(θ₆)² s(θ₄)² s(θ₅)² + s(θ₄)² s(θ₅)² s(θ₆)²)) c((pi s(( l₄ 
c(θ₄) c(θ₅) s(θ₆) - l₄ s(θ₄) s(θ₅) s(θ₆) + l₅ c(θ₄)² c(θ₅) 
s(θ₆) + l₅ c(θ₅) s(θ₄)² s(θ₆))/(c(θ₄)² c(θ₅)² c(θ₆)² + 
c(θ₄)² c(θ₅)² s(θ₆)² + c(θ₄)² c(θ₆)² s(θ₅)² + c(θ₅)²c(θ₆)² 
s(θ₄)² + c(θ₄)² s(θ₅)² s(θ₆)² + c(θ₅)² s(θ₄)² s(θ₆)² + 
c(θ₆)² s(θ₄)² s(θ₅)² + s(θ₄)²s(θ₅)² 
s(θ₆)²)))/2)(c(θ₅)(c(θ₃)(1 -  l₄² l₅²((l₅ (c(θ₃) c(θ₄)(c(θ₁) 
s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁))) +  l₄ c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ 
(c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂))) +  l₄ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) 
+ l₄ s(θ₃))²/2)²)½ + l₄ l₅ s(θ₃)((l₅ (c(θ₃) c(θ₄)(c(θ₁) 
s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄)(c(θ₁) s(θ₂) + c(θ₂) 
s(θ₁))) + l₄ c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 + (l₅ 
(c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) s(θ₄)(c(θ₁) 
c(θ₂) - s(θ₁) s(θ₂))) +  l₄ c(θ₃)(c(θ₁) c(θ₂) - s(θ₁) 
s(θ₂)))²/2 -  l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) s(θ₃)) 
+ l₄ s(θ₃))²/2)) - s(θ₅)(s(θ₃)(1 - l₄² l₅²((l₅ (c(θ₃) 
c(θ₄)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)) - s(θ₃) s(θ₄)(c(θ₁) s(θ₂) 
+ c(θ₂) s(θ₁))) + l₄ c(θ₃)(c(θ₁) s(θ₂) + c(θ₂) s(θ₁)))²/2 
+ (l₅ (c(θ₃) c(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂)) - s(θ₃) 
s(θ₄)(c(θ₁) c(θ₂) - s(θ₁) s(θ₂    + l₄ c(θ₃)(c(θ₁) c(θ₂) - 

s(θ₁) s(θ₂)))²/2 - l₄²/2 - l₅²/2 + (l₅ (c(θ₃) s(θ₄) + c(θ₄) 
s(θ₃)) +  l₄ s(θ₃))²/2)²)½ -  l₄ l₅ c(θ₃)). 

VI. SIMULATION 

A simulation is the imitation of the operation of 

real-world process or system over time. It is a tool to evaluate 

the performance of a system, existing or proposed, under 

different configurations of interest and over long periods of 

real time. The behavior of a system that evolves over time is 

studied by developing a simulation model. Simulation 

consists of Building a computer model that describes the 

behavior of a system and Experimenting with this model to 

reach conclusions that support decisions It Use the 

mathematical model to determine the response of the system 

in different situations. Objective in simulation is for given 

external torque/forces obtain motion of robot. Simulation can 

be used as an Analysis tool for predicating the effect of 

changes as well as Design tool to predicate the performance 

of new system. It is better to do simulation before 

Implementation. 

In order to establish the kinematic and the dynamic 

model of the humanoid robot, both the mechanical properties 

of all its components, such as mass and inertia, as well as its 

servos dynamic behavior, must be known to a certain degree 

of accuracy. These dynamic properties will be used in Matlab 

in order to get an accurate simulation for the real humanoid 

robot aiming at a good control. Dynamic model of the biped 

is obtained based on the physical properties of their 

components. Typically, by knowing the mass, center of mass 

and the inertia tensor of each element of the robot it is 

possible to get mathematical model. The centroid of each 

mass was then found by using the SolidWorks software 

package, after the detailed elements of all the pieces involved 

were drawn in AutoCAD Inventor software. Finally, the 

inertia tensor of each element was determined through the 

SolidWorks software. 

We have done the simulation of the above-mentioned 

motions of the biped using MATLAB as the programming 

tool.  This work presents trajectory planning of the joint 

angles of a five link biped for stable walking. The locomotion 

is constrained to a plane perpendicular to the ground that 

separates the biped into left and right halves. Their model 

describes five links, which consists of the two legs and the 

torso driven by independent servos. 

 

A. Trajectories for Walking 

The biped walking cycle is broken into various phases 

depending on how the feet are in contact with the ground. 

There are three phases in the biped walking i.e the starting 

phase from the vertical position and two steady walking 

steps. The walking is started with right leg. In the first step, 

the right leg is moved forward and placed on the ground with 

support of the left leg. The first steady walking step involves 

lifting the left leg with single leg support of the right leg until 

the left leg is planted on the ground again. The second steady 

walking step is similar to the first steady walking step, but 

this step has single leg support of the left leg until the right 

leg is lifted and planted on the ground again. The repetitions 

of walking steps result in a continued locomotion in the 

sagittal plane. At the end of each step the biped has two 

legged support. This walking can be defined as one starting 

step and a repetition of steady walking steps with left and 

right feet alternately switched for supports. The results are 
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provided in the form of graphs with joint angles against time 

giving the trajectory. 

 

B. Simulation and Results for Biped Walking 

The biped model discussed in this work is simulated 

using MATLAB, due to the simplicity of its   use and good 

quality graphics. A program ‘walking_slope, 

walking_ground’ created for simulation and various other 

functions double_stance, heelstrike_ds, heelstrike_ss, 

single_stance that support the main program are created. The 

lengths and the radii of the links of the humanoid robot in 

meters are obtained by measuring a human subject. Initial 

joint angles are defined for vertical position where legs of the 

humanoid hands are aligned to each other. 

 

C.Simulation of biped walking on sloped ground 

The trajectory of the joint angles obtained from the work 

is converted into a set of equations defining the relationship 

between the joint angles and time for various links of the 

humanoid during a walk cycle. In this function, the equations 

are given for various links at different time periods. For each 

link the times and the joint angles are collected as arrays in 

steps of time which is same as the time increment for every 

iteration of the simulation. Plotting the coordinates of the 

joints obtained by this function would result in stick figure. 

To obtain better graphics, the links of the humanoid robot can 

be represented as cylinder. The parameters that will be used 

are listed asM = 1000, m = 1,l = 0, L = 1,w = 0, c = 1,r = 0, d 

= 0,g = 1, gam = 0.009. 

Foot has a radius of zero, so we have to set two of the 

angles to be constant. We have set q2 and q4 at pi. Swing leg 

is allowed to pass for near vertical stance leg angles. A step 

be viewed as a stride function takes a vector of the angles and 

angles rates at a particular point in the motion .It returns the 

angles and rates at the next occurrence of that point. The 

result of the stride function are found by integrating the 

equations of motion over one step. 

If for a given set of initial conditions if stride function returns 

the same conditions then one gait cycle exists.  If the stride 

function returns the initial conditions after two steps then two 

gait cycle exists. The zeroes of g (θ₀) is defined as, g (θ₀) = f 

(θ₀) - θ₀. 
The gait cycles are periodic walking solutions .The 

initial conditions for which a gait cycle exists are called fixed 

points. We have used MATLAB to find fixed points and 

create periodic walking simulations. Stability of the cycles is 

checked by finding the eigenvalues of the Jacobian of the 

stride function. J is constructed by evaluating the stride 

function with small perturbations to the components of the 

particular fixed point that is being evaluated. Small 

perturbations, θ, to the state vector, θ₀, at the start of a step 

will either grow or decay to the step by θ
k⁺¹ = J θ

k
. 

If the eigenvalues of the Jacobian are within the unit 

circle, then sufficiently small perturbations will decay to zero 

and the system will return to the gait cycle. If any eigenvalues 

are outside the unit circle, perturbations along the 

corresponding eigenvector will grow and drive the gait cycle 

unstable. If any eigenvalues lie on the unit circle, the cycle is 

neutrally stable for small perturbations along the 

corresponding eigenvector and these perturbations will 

remain constant. We have used MATLAB to find the 

Jacobian and its eigenvalues. 

As q₂ and q₄ are locked, we eliminate the angular 

momentum balance equations about points A₁ and A₂. M₁₁, 
M₁₃, M₃₁, M₃₃, RHS₁, and RHS₃ are required to find the 

necessary angles. A collision detection function takes in the 

current time, positions, and parameters and determines 

whether a collision has occurred. This function is used with 

the integrator. 

The main driver are needed to be set up. Initially, the 

initial conditions vector and parameters are setup. The initial 

conditions vector only needs q₁, u₁,q₃,u₃since q₂ and q₄ are 

constant. We have used the fsolve function to calculate the 

fixed point, 0 = f (θ₀) - θ₀. fsolve will iterate upon the 

provided initial conditions until it finds the fixed points 

within the tolerance provided. The fixed point function calls 

the onestep function which integrates the equations of motion 

and uses the heelstrike equations over the number of steps 

specified. The fixed point function calls onestep for one step. 

We have found out the stability of the found fixed points. 

We have defined a function partialder which calculate 

the Jacobian of the stride function. The Jacobian is estimated 

using central difference method of approximating 

derivatives. Central difference is accurate to the perturbation 

size squared as opposed to the perturbation size for forward 

difference but requires a little less than twice the number of 

evaluations. We will use perturbations of 

size 1×10⁻⁵.onestep function is created which will integrate 

the equations of motion over the specified number of steps. 

The function takes in the initial conditions, the parameters 

and the number of steps. 

We have set up the function for calculating the fixed 

points. If no number of steps is specified, it is assume that we 

are trying to find the fixed points and we only want to return 

the final state of the robot. The motion can be integrated and 

an event will be set in the options. This event will call 

collision function to detect for collisions while the equations 

of motion are being integrated. When a collision is detected, 

the integrator is stopped and the heelstrike equations will be 

called using the final conditions from the integration of the 

single stance equations. The resulting state vector and time is 

then set to the initial conditions for integration of the next 

step. At the end of the steps, if flag is one, all of the positions 

and times are returned. If not, only the last positions are 

returned. Lastly, we animate the robot over the steps and 

create plots of the stance leg and swing leg angles. The 

simulation results are as listed below. 
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Fig 4: Walking pattern of biped on sloped ground 

 

Fig 5: Stance and Swing angle plot against time for sloped 

ground 

D.Simulation of biped walking on flat surface 

The final step in creating walking robot simulations is 

adding control. The simple biped can walk only when the 

ground is sloped. We have designed a biped that also walk on 

flat ground. This includes simple biped with motor at each 

joint for actuation. The parameters that are used are as M = 1, 

m = 0.5, I = 0.02, l = 1, w = 0, c = 0.5, r = 0.2, d = 0.00, g = 1, 

gam = 0.00.Then add a global variable for the hip state and 

define the two possible states. The initial state will be 

Hipswing.  

It is required to set up a controller function that will take 

in the state variables, time, and parameters. The controller 

return the torque at that instance. Then define the 

proportional and derivative gains as well as the reference 

angle for the hip swing. State the robot is determined by 

controller. After leg reaches the reference angle, the robot 

transform to free swing. If Hipstate is Hipswing, the 

controller calculates the torque that will be applied based on 

the control law, Th = -P(q₃-q3REF)-Du1. If Hipstate is Hipfree, 

the controller applies zero torque. 

Finally we have the controller act in the single stance 

function. We set to be equal to the result of the controller 

function. The simulation results are as listed below.  

 

 

Fig 6:Walking pattern of biped on flat ground 

 

Fig 7: Stand and Swing angle plot against time for flat ground 

VII. CONCLUSION 

Biped which had been previously modelled have less 

number of DOF, which restrict the motion of biped in 

working environment. Also the mathematical model which 

had been used, take into account either kinematic or dynamic 

approach. Both approaches were not considered. This paper 

presented an easy way to visualize movement of a 5-link, 

11–DOF biped considering kinematic and dynamic aspects. 

This is the first step for deriving dynamic model of biped. 

Lagrangian formulation is applied to obtain dynamic model 

of robot. There are two sets of the humanoid 3D CAD 

drawing. One set is detailed includes resembling the reality 

pieces for mechanical analysis. Second is a less detailed one 

with precise real measurements is used in animation. The 

process of modeling the multi-body structure of a biped robot 

for generating a stable walking motion is a very complex .It 

deal with the formulation and solution of highly complex 

dynamics equations of a very large size. Complexity of 

mathematical models is due to geometry of biped. This work 

can be seen responsible for the creation of the strong 

foundations for future developments in humanoid robots. 

During this project, the following topics have been 

successfully achieved:  

i. The external physical parameter identification of the 
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humanoid structure, such as the mass, inertia tensor 

and centers of gravity of its main parts.  

ii. The dynamic analysis and identification of the 

behavior of the servo-actuators.  

iii. The development of a simulator for the biped using 

Matlab as animation. 

ACKNOWLEDGMENT 

I give my true and sincere gratitude to Mr.S.N.Kadam for 

his dedication and encouragement. Their passion and broad 

knowledge in robotics nourished my growth. I would like to 

thank them for giving me his ideas to do this work as well as 

for his guidance, support and inspiration throughout the 

course. To sum up, I would like to thank my friend with 

whom I had with. Of course, I don't have words to describe 

the support I received from my parents, My Father Ramesh 

Thavai and My Mother ReshamaThavaiso I... 

 

 

REFERENCES 

Books: 
[1] Saeed B. Niku, Introduction to RoboticsAnalysis, Systems, 

Applications (NJ-Prentice Hall, 2000). 

[2] John J. Craig, Introduction to Robotics Mechanics and Control 

(NJ- Prentice Hall, 2005). 

[3] Frank L.Lewis, Darren M.Dawson, ChaoukiT.Abdallah, Robot 

Manipulator Control Theory and Practice (Marcel Dekker, 

2004). 

[4] R K Mittal, I J Nagrath, Robotics and Control (Tata 

McGraw-Hill, 2003). 

 

Theses: 
[1] Jeakweon Han, Bipedal Walking for a Full-sized Humanoid 

Robot Utilizing Sinusoidal Feet Trajectories and Its Energy 

Consumption, doctoral diss., Virginia Polytechnic Institute and 

State University, Virginia, 2012. 
 


