School of Engineering & Technology

Subject: AM III Marks: 20 Class: SE

Unit Test 2

Date: 26/10/16 Duration: 1Hr Branch: CO

N. B. 1. Attempt any four questions of the following.

- 2. All questions carry equal marks.
- 1. Find Fourier series of $f(x) = x^2$, $0 \le x \le 2\pi$. Hence deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \cdots$ 2. Find half range cosine series of $f(x) = \begin{cases} kx & 0 < x < \frac{l}{2} \\ 0 & \frac{l}{2} < x < l \end{cases}$
- 3. Show that the set of functions sinx, sin3x, sin5x, ... is orthogonal over $\left(0, \frac{\pi}{2}\right)$. Hence construct an orthonormal set of functions.
- 4. Find directional derivative of $\emptyset = x^2 y \cos z$ at $(1, 2, \frac{\pi}{2})$ in the direction of $\bar{a} = 2i + 3j + 2k$.
- 5. Show that $\overline{F} = (2xyz^2)i + (x^2z^2 + z\cos yz)j + (2x^2yz + y\cos yz)k$ is conservative. Hence find its scalar potential.
- 6. Evaluate using Green's theorem $\int_C (x^2 y) dx + (2y^2 + x) dy$ around the boundary of the region bounded by $y = x^2 \& y = 4$.

**** All the Best ****

ANJUMAN-I-ISLAM'S KALSEKAR TECHNICAL CAMPUS, NEW PANVEL

School of Engineering & Technology

Subject: AM III Marks: 20 Class: SE

Unit Test 2

Date: 26/10/16 Duration: 1Hr Branch: CO

N. B. 1. Attempt any four questions of the following.

- 2. All questions carry equal marks.
- 1. Find Fourier series of $f(x) = x^2$, $0 \le x \le 2\pi$. Hence deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \cdots$ 2. Find half range cosine series of $f(x) = \begin{cases} kx & 0 < x < \frac{l}{2} \\ 0 & \frac{l}{2} < x < l \end{cases}$
- 3. Show that the set of functions sinx, sin3x, sin5x,... is orthogonal over $\left(0,\frac{\pi}{2}\right)$. Hence construct an orthonormal set of functions.
- 4. Find directional derivative of $\emptyset = x^2y\cos z$ at $(1, 2, \frac{\pi}{2})$ in the direction of $\bar{a} = 2i + 3j + 2k$.
- 5. Show that $\overline{F} = (2xyz^2)i + (x^2z^2 + z\cos yz)j + (2x^2yz + y\cos yz)k$ is conservative. Hence find its scalar potential.
- 6. Evaluate using Green's theorem $\int_C (x^2 y) dx + (2y^2 + x) dy$ around the boundary of the region bounded by $y = x^2 \& y = 4$.

School of Engineering & Technology

Subject: OOPM

Date: /10/2016

Marks: 20

Duration: 1 Hr

Class: SE

Branch:Computer Eng.

Instructions: All Questions are compulsary.

Q.1 Answer any 5 questions out of 6 (Each carry 2 marks)

(10M)

a)What will be the output of the following code

```
try
{
    int x = 0;
    int y = 5 / x;
}
catch (Exception e)
{
    System.out.println("Exception");
}
catch (ArithmeticException ae)
{
    System.out.println("Arithmetic Exception");
}
finally
{
System.out.println("finished");}
```

b) What will be the output of the following code

```
class Thr extends Thread
{
  public static void main(String arg[])
{
  Thr t=new Thr();
  t.run();
}
  public void run()
{
  int i;
  for(i=0;i<3;i++)
  {
    System.out.print(i+" ");}}}</pre>
```

- C. Draw and Explain Life cycle of Applet.
- D. Differentiate between abstract class and interface.
- E. Draw and Explain Life cycle of thread.
- F. Explain Wrapper classes and its applications.

Q.2 Answer any one Question.

(5m)

- i) With suitable example, Explain creation of user defined packages.
- ii) Explain Different types of Inheritance with example.

Q.3 Solve any one Question.

(5M)

- i) WAP to print \$*\$*\$* using multithreading concept.
- ii) WAP to take values of x,y,z from the user, calculate and display (x+y+z)/(x*y*z). Create user defined exception to display proper message when the value of(x*y*z) is ZERO.

Symbol of Secularism & National Integration ANJUMAN-I-ISLAM'S KALSEKAR TECHNICAL CAMPUS, NEW PANVEL School of Engineering & Technology

Subject: DS
Date: .../.../2016
Class : SE CO
Semester: III

Unit-Test: 2

Marks: 20 Duration: 1 hr Branch: CO

Note:1) All questions all compulsory.

Q 1. Attempt any five out of six.	each 2 marks)
(i) Define Strictly Binary Tree and Complete Binary Tree with dia (ii) Explain DEQUE with pictorial representation .	gram.
(iii) Evaluate the postfix expression AB+C*D/ if A=2, B=3, C=4,	D=5.
(iv) State the limitation of a normal QUEUE that can be overcome CIRCULAR QUEUE.	
(v) Explain STACK as ADT.	
(vi) In binary tree the degree of leaf node is always (0,-1,1,1) of binary tree is(maximum,minimum) level of any l	
Q 2. (a) Write a program in C to implement Insertion sort. Or	5
(b) Write a function in C to insert elements in CIRCULAR QUE	UE. 5
Q 3. (a) Explain the concept of Binary Search Tree. Write the steps of	f inorder
traversal for it.	5

(b) Write a function in C to delete elements in CIRCULAR QUEUE.

School of Engineering & Technology

Subject: Digital Logic Design and Analysis

Class: SE COMP

Duration: 1 Hr TEST-II

Q1) Attempt any 5 questions. Each question carries 2 marks.

- A. Express the equation in standard POS form $f(A,B,C)=\Sigma$ m (0,2,5,7).
- B. Convert SR FF to D FF. (Design only)
- C. Write truth table for SR, T, D, JK FF.
- D. Draw full adder using 2 half adders and additional gates.
- E. Draw parallel adder/ subtractor for 2s complement.
- F. What is race around condition in JK FF explain with diagram, state the solution.
- Q2) Attempt any one. (5)
 - A. Design 2-bit binary comparator.
 - B. Explain bidirectional shift register.
- Q 3) Attempt any one. (5)
 - A. Design 3-bit binary to gray code converter.
 - B. Implement following function using MUX and few gates.

 $f(A,B,C,D)=\Sigma m (0,3,5,7,9,13,15)$

School of Engineering & Technology Date: 24/10/2016 DIS Subject: Duration: 1 Hr/s Marks: 20 **Branch: COMPUTER** SE (Sem III) Class: Instructions: 1) All the Questions are compulsory. 2) Assume suitable data wherever necessary. (10)Q. 1) Attempt any 5: a) Define i) Surjective ii) Injective iii) Bijective functions. b) Find the exponential generating functions of the following sequences: (i) $\{1,2,3,4,0,0,0,\ldots\}$ (ii) $\{1,1,1,1,\ldots\}$ (iii) $\{1,2a,3a^2,4a^3,\ldots\}$ c) Write Huffman algorithm to find an optimal tree. d) Define Hamiltonian path and Hamiltonian circuit. e) Let $f: R \rightarrow R$, $f(x) = x^2 - 1$, $g(x) = x^2 + 2$, then find (i) gof (ii) fog f) Define with example: Planar Graph. Q. 2) A) Show that in a bounded distributive lattice, if a complement exists, it is unique. (5) B) A tree has 2n vertices of degree 1, 3n vertices of degree 2 and n vertices of (5) degree 3. Determine the number of vertices and edges. **Q.3)** A) $A=\{a,b,c,d,e\}$ and let the relation be (5) $R = \{(a,a),(b,b),(c,c),(d,d),(e,e),(c,b),(c,a),(e,a),(d,b),(d,a),(d,e),(b,a)\}$ Draw its digraph and its Hasse diagram. (5)B) Explain Minimum Spanning tree with its application. Find the Minimum Spanning tree for the adjoining graph using Prim's algorithm.

ANJUMAN-I-ISLAM'S KALSEKAR TECHNICAL CAMPUS, NEW PANVEL School of Engineering & Technology

Subject: Marks:

ECCF

20

Class:

SE

UT-IInd

Date:

26-10-2016

Duration: 1 Hr.

Branch: COMPUTER

Note:- Q-1 is compulsory.

Q-1)	Attempt any 5.	
a)	Draw block diagram of Foster Seeley FM demodulator & phasor diagrams	2
b)	Explain drawbacks of Delta modulation.	2
c)	Explain need for modulation.	2
d)	Draw block diagram of SSB generation using phase shift method.	2
e)	Compare AM , FM (any 4 points).	2
f)	Explain multiplexing technique.	2
Q-2) a)	Solve any one . If one input to AM modulator is Voltage = 20v & frequency = 500 kHz , other input is frequency = 10kHz which causes change in o/p wave of \pm 7.5 v. Find – f_{USB} , f_{LSB} , %m , equation of AM wave , frequency spectrum.	5
b)	Draw & explain working principle of PLL.	5
Q-3) a)	Solve any one .	
	Compare PAM, PWM, PPM (any 5 points).	5
b)	Draw & explain of TDM-FDM system.	5