
Design Algorithm for WSNs with Mixed Traffic
Using RPL

Submitted in partial fulfillment of the requirements

of the degree, of

(Bachelor of Engineering)

By

RESHMA DASTAGEER USTAD 14DET66
SARIM INTEZAR QAZI 14DET100
MD UMAR MOHD OBAID 14DET93

GUIDED BY:

(Asst.Prof. Chaya Ravindra)

(Electronics & Telecommunication)
AIKTC/Mumbai University

(2016-2017)

1 Design Algorithm for WSN’s With RPL Using Open Source

CHAPTER – 1

INTRODUCTION

Nowadays, Internet of Things (IoT) becomes a potential future scenario of the

applicability and impact of technology in human life. The benefits of connecting

both WSN and other IoT elements go beyond remote access, as heterogeneous

information systems can be able to collaborate and provide common services Our

work is a combination of Scilab and its implementation on a Conkiti OS with

Cooja simulator and using IOT which can provide us with number of parameters

and applications. The specification of the Ipv6 Routing Protocol for Low-power

and Lossy Networks was specified inside RFC 6550 [1]. Scilab is used for the

design the RPL algorithm. To create the topology of WSN RPL algorithm we

used one sink node and many remaining node. The main Aim of RPL is to send

packets between sink node and sensor node and monitor the parameters like

temperature, light, power cost etc. for each sensor node predecessor is already

defined we are focusing on two parameters temperature and light. The routing is

optimized for all communication between sink nodes and sensor nodes when RPL

is initiated from sink node the Peer-To-peer communication is consider but the

path is selected which is longer then the corresponding shortest path belongs to

the constructed DODAG tree using physical link packets are directly transmitted

in this project focusing on the random topology generation using IPv6 routing

protocol. Next, we bring in section how to construct the tree in DODAG.

Afterward in another section we understand the concept of how to create topology

in Scilab using NARVAL Toolbox. In further section, we describe the

Implementation of RPL in Contiki OS using Cooja simulator and IOT (Internet

of things) with the help of IOT how to measure the parameters like Temperature

and light.

2 Design Algorithm for WSN’s With RPL Using Open Source

1.1 - WIRELESS SENSOR NETWORKS

Wireless sensor networks (WSN), sometimes called wireless sensor and

actuator are spatially distributed autonomous sensors to monitor physical or

environmental conditions, such as temperature, sound, pressure, etc. and to

cooperatively pass their data through the network to a main location. The more

modern networks are bi-directional, also enabling control of sensor activity. The

development of wireless sensor networks was motivated by military applications

such as battlefield surveillance; today such networks are used in many industrial

and consumer applications, such as industrial process monitoring and control,

machine health monitoring, and so on.

The WSN is built of "nodes" – from a few to several hundreds or even thousands,

where each node is connected to one (or sometimes several) sensors. Each such

sensor network node has typically several parts: a radio transceiver with an

internal antenna or connection to an external antenna, a microcontroller, an

electronic circuit for interfacing with the sensors and an energy source, usually

a battery or an embedded form of energy harvesting.

Fig 1.1 Wireless Sensor Network

3 Design Algorithm for WSN’s With RPL Using Open Source

1.2 - TRAFFIC PATTERNS

WSNs supports three basic traffic flows:

• Point-to-Point (P2P),

• Multipoint-to-Point (MP2P) and

• Point-to-Multipoint (P2MP).

P2P describes the pattern of communication between a designated sender and

receiver. In WSNs, this traffic pattern can occur in two ways: Firstly, a sensor

node might be requesting measurements from another node somewhere in the

network. In this case, which is, it is likely that this request and the response have

to pass via intermediate sensor nodes due to the size of the WSN. Secondly, the

P2P traffic pattern could be used to prompt measurements from specific nodes.

Gathering data measured within the WSN requires a collection protocol which

draws information from many nodes and forwards it to one or more sinks in a

MP2P fashion.

Figure 1.2 Point-to-Point Traffic

4 Design Algorithm for WSN’s With RPL Using Open Source

Figure 1.3 Multipoint-to-Point Traffic

Gathering data measured within the WSN requires a collection protocol which

draws information from many nodes and forwards it to one or more sinks in a

MP2P fashion shows this traffic pattern. Data collection protocols does not

necessarily require reliability This is due to the fact that a lot of the measurements

tend to be threshold based, so a single node’s result being lost do not severely

impact the results (using MP2P). The level of reliability required of data

collection protocols differs on the application space.

Figure 1.4: Point-to-Multipoint Traffic

5 Design Algorithm for WSN’s With RPL Using Open Source

1.3 ROUTING IN WSNs

Routing is a process of selecting paths in a network along which to send network

traffic. Once the paths have been selected, data traffic is forwarded from one

endpoint of the transmission via intermediate nodes to the other endpoint.

Routing algorithms are used to determine the "best" paths towards the destination

according to one or more metrics, depending on the application requirements. For

example, one widely used metric selects the route with the least number of hops

trough intermediate nodes towards the destination. Alternative metrics could be

to use the best link quality, or least energy consumption. More on routing metrics

for WSNs can be found in. The restrictions imposed by WSNs, add further

requirements to suitable routing algorithms. The algorithms have to efficiently

deal with an ever changing topology, whilst imposing as little control traffic

overhead as necessary on the network, as the transmission of messages is very

costly in terms of energy The routing protocol needs to compute routes between

nodes in the network in order to actually be able to send data to each node.

Proactive protocols periodically re-compute these routes, whereas reactive

protocols do so only on demand, i.e. when a data packet need to be transmitted.

The following section describes the difference between proactive and reactive

protocols and give examples of routing protocols for each category.

• Reactive Protocols

In reactive routing protocols, no path to the destination is currently known when

a packet needs to be forwarded. Routes are acquired by nodes on demand by

triggering a route discovery process, e.g. by diffusing a route request packet

through the network and then wait for a response for the destination node. This

response might take time to arrive, causing the packet delivery to be delayed. The

overhead of control packets in a reactive protocol is depending on the amount of

6 Design Algorithm for WSN’s With RPL Using Open Source

data traffic in the network. Reactive protocols do not require each node to store

routes for the entire network, rather computed only for destinations to which data

traffic is to be forwarded. The Ad-hoc On-Demand Distance Vector (AODV) is

an example of a reactive protocol.

• Proactive Protocols

In proactive routing protocols, nodes regularly compute routing tables of the

complete network, thus pre-provisioning all possible paths for the entire network

topology. Hence, there is no delay imposed by route acquisition before sending

the data traffic to its destination. However, a certain amount of control traffic is

needed to maintenance the routing tables, and keep them consistent over the

whole network. The Optimized Link State Routing protocol (OLSR) is a

prominent example of a proactive protocol

• Flooding Algorithm

A variety of routing protocols exist for WSNs, which uses different strategies to

address the restrictions introduced in WSNs. The most straightforward way to

diff use information in a WSN is to use a flooding algorithm. The flooding

algorithm transmits broadcast data which are consecutively retransmitted in order

to make them arrive at the intended destination. To prevent broadcast storms,

several mechanisms are available: nodes check for duplicates, i.e. messages they

already received, and packets may contain information about how many times

they are allowed to be retransmitted. The drawbacks of the flooding algorithm are

that nodes redundantly receive multiple copies of the same data messages.

Inconveniences are highlighted when the number of nodes in the network

increases.

7 Design Algorithm for WSN’s With RPL Using Open Source

CHAPTER NO: 02

 LITERATURE SURVEY

2.1 RPL: IPv6 Routing Protocol for Low Power and Lossy Network.

This document specifies the IPv6 Routing Protocol for Low-Power and Lossy

Networks (RPL), which provides a mechanism whereby multipoint-to-point

traffic from devices inside the LLN towards a central control point as well as

point-to-multipoint traffic from the central control point to the devices inside the

LLN are supported. Support for point-to-point traffic is also available. Low-

Power and Lossy Networks (LLNs) are a class of network in which both the

routers and their interconnect are constrained. LLN routers typically operate with

constraints on processing power, memory, and energy (battery power). Their

interconnects are characterized by high loss rates, low data rates, and instability.

2.2 IEEE PAPERS

1) Mobility Enhanced RPL for Wireless Sensor Networks

 In this paper, they investigate the problem of supporting mobility over RPL (IPv6

Routing Protocol for Low power and Lossy Networks) when applied to route

traffic in Wireless Sensor Networks (WSNs). RPL is a routing protocol adapted

for information routing with low power, low storage and processing sensor

devices, in static topologies commonly found in WSNs, but which is not directly

designed for mobile scenarios. Specifically, RPL actively decreases control

traffic, at the price of lower reactivity to topology changes. They introduce some

new mechanisms to the native RPL that reconcile decrease in control traffic and

reactivity. They are based on an identification of mobile nodes, and furthermore

they enhance RPL behavior in case of node mobility.

8 Design Algorithm for WSN’s With RPL Using Open Source

2) M-RPL: A Design Algorithm for WSNs with Mixed traffic

This paper proposes a design algorithm called M-RPL. It is IPv6 based routing

protocol for low power, lossy Networks (LLNs) that concern routing of both types

of traffic. However, since multicast traffic model could be employed in many

situations and could be managed by various kinds of multicast routing protocols.

The efficiency of M-RPL is evaluated for various traffic demands and networks

of 100 nodes and the total unicast traffic in/out per node of 64, 128, 256, 512 and

1024 kbps, compared with RPL. The experimental results show that, in almost all

cases, M-RPL give better performance in term of installation cost.

3) Energy-efficient communication protocol for wireless microsensor

networks

In this paper, they look at communication protocols, which can have significant

impact on the overall energy dissipation of these networks. Based on our findings

that the conventional protocols of direct transmission, minimum-transmission-

energy, multi-hop routing, and static clustering may not be optimal for sensor

networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a

clustering-based protocol that utilizes randomized rotation of local cluster based

station (cluster-heads) to evenly distribute the energy load among the sensors in

the network.

4) PEGASIS-E: Power Efficient Gathering in Sensor Information System

Extended

In this paper, an improved energy efficient PEGASIS based protocol (PEGASIS-

E) has been proposed. PEGASIS-E uses average distance among the sensor nodes

as the criteria for chaining, thereby providing better performance in terms of

energy dissipation and amount of information sent to BS. The simulation results

obtained show that PEGASIS-E gives an increase in the network lifetime as

compared to PEGASIS.

9 Design Algorithm for WSN’s With RPL Using Open Source

2.3 OBJECTIVE

The objective of this project is to evaluate and simulate RPL (Routing protocol

for low power and lossy network) for WSN (Wireless Sensor Networks) and

measure it performance in terms of temperature and light. This evaluation should

be done theoretically and through simulation. Project is simulated by the Scilab,

Contiki OS with Cooja simulator. The project also included the goal to generate

a simulation environment that could be used as a platform for further studies

within the area WSNs.

10 Design Algorithm for WSN’s With RPL Using Open Source

2.4 PROBLEM DESCRIPTION

• Performance of routing protocols is an important issue in WSNs (wireless

sensor networks). Wireless sensor networks are the collection of wireless

sensor nodes that can exchange information dynamically among them

without pre-existing fixed infrastructure and they’re highly dynamic in

nature.

• This evaluation should be done theoretically and through simulation. The

project also included the goal to generate a simulation environment that

could be used as a platform for further studies within the area of wireless

sensor networks and its protocols.

• The goal of this project is to:

1. Get a general understanding of WSNs (Wireless Sensor Networks)

and RPL protocol.

2. Design of RPL routing protocol for wireless sensor networks in

Scilab using NARVAL toolbox.

3. Implementation of RPL protocol in Contiki os using Cooja

simulator.

4. Compute temperature and light from the simulation from a

particular single wireless sensor node.

11 Design Algorithm for WSN’s With RPL Using Open Source

CHAPTER NO:03

 METHODOLOGY

3.1 Algorithm

This algorithm for designing RPL tree in Scilab using

NARVAL tool box

Step1: Deciding network size.

Step2: Decide a network squared area side and Locality radius.

Step3: Generate a topology with respect to the Locality method.

Step4: Selection of the source node

Step5: Displaying a parameter in window index like node diameter, node

border, node color

Step6: Graphical visualization of a WSN network

Step7: Creating shortest path with the help of Dijkstra algorithm from a source

on a topology.

Step8: Generate a vector of integer values from the range [0,N-1].

Step9: Find the closest node from a geographic location and create possible

routes.

Step10: Build a RPL tree from a source node on a graph.

Step11: Highlight a DODAG tree generated by the RPL algorithm.

Step12: Display the index of each node within a graph.

Step13: STOP

12 Design Algorithm for WSN’s With RPL Using Open Source

3.2 Flowchart:

Figure 3.1 Algorithm of RPL design in Scilab

13 Design Algorithm for WSN’s With RPL Using Open Source

CHAPTER NO:04

ROUTING PROTOCOL

4.1 RPL ROUTING PROTOCOL
The Internet Engineering Task Force (IETF) has a Routing Over Low power and

Lossy networks (ROLL) working group currently specifying an IPv6-based

unicast routing protocol for WSNs, denoted RPL ("IPv6 Routing Protocol for

Low power and Lossy Networks"). IETF ROLL working group have extensively

evaluated existing routing protocols such as OSPF, AODV, IS-IS and OLSR and

concluded that they are not suitable for the routing requirements specified in, and

RPL is a proactive routing protocol, constructing its routes in periodic intervals.

RPL may run one or more RPL instances. Each of the instances has its own

topology built with its own unique appropriate metric. Nodes can join multiple

RPL instances but only belong to one DODAG within each instance. Starting

from one of more root nodes, each Instance builds up a tree-like routing structure

in the network, resulting in a Destination-Oriented Directed Acyclic Graph

(DODAG). For the rest of this chapter, the protocol is explained for one RPL

Instance with one DODAG.

4.2- Topology Formation

Topology formation in RPL starts with designating one node as root node. The

configuration parameters of the network are determined by the root node, and

disseminated to the network using a DODAG Information Object (DIO) message.

The mandatory information contained in a DIO comprises amongst others: RPL

Instance ID for which the DIO is sent, the DODAGID of the RPL Instance of

which the sending node is part of, the current DODAG version number, and the

node’s rank within the DODAG. The RPL Instance ID is a unique identifier of an

RPL Instance in a network. The DODAGID serves the same purpose: to uniquely

identify a DODAG in an RPL Instance. The rank represents the nodes individual

position relative to the root node. The rank increases in the downward direction

14 Design Algorithm for WSN’s With RPL Using Open Source

from the root towards the leaf nodes. The node’s rank gets calculated by an Object

Function (OF) which uses a metric to determine the node’s desirability (in terms

of application goals, which might e.g., be load balance for energy preservation)

as a next hop on a route to the root node. When forming the DODAG, each node

is required to select a parent from its neighbors. Accordingly, the node has to

calculate its own rank so that it is larger than any of its parents. In this way, the

formation of loops in the routing structure is prevented.

Figure 4.1 Example Network: circles illustrate wireless sensor nodes, connected with

802.15.4 links depicted by dashed lines.

The OF can be used to tailor RPL closely to serve a specific application. To give

an example, a node’s energy level or its power resource could be used in he OF

to calculate the rank. When a node then selects a parent, it will choose the

neighbor with the lowest rank, hence the preferable node energy or power

resource. For the sake of simplicity, the hop count metric is used as the OF in the

following example. The root node starts the DODAG formation by broadcasting

a DIO message to its neighbor as illustrated in Figure 4.2 (round 1). The root node

of a DODAG is the only node allowed to initiate the diffusion of DIOs.

Throughout the whole topology formation, RPL Instance ID and the DODAGID

remain unchanged. The only field updated whilst the DIO message are traversing

the network, is the rank. The root node has a rank equal to 0, since the distance

from itself is zero. When the neighbors receive the broadcast DIO message, they

15 Design Algorithm for WSN’s With RPL Using Open Source

calculate their rank according to the OF by computing its hop count distance to

the root node and sets its rank to From the DIO message received, each node

retains a candidate neighbor set, in which it keeps track of the neighbors with

lower or equal rank then itself. The candidate neighbor set is used to select parent

nodes, which have to have a lower rank than itself. If there are more than one

selected parent, the node elects a so-called preferred parent, which serves as the

node’s next hop when routing a data packet towards the root. This choice is

determined by the OF. In round 1, there is only one candidate parent, so they pick

the root as their preferred parent. this relationship is represented by the bold plain

arrows. After calculating its rank, each node broadcast the updated DIO message

to its neighbors. The root node will discard the DIO messages received since they

originate from nodes with higher rank than itself. The other neighbors will repeat

the process of calculating its own rank according to the OF, and update the DIO

message before broadcasting it to their neighbors. there are several nodes in the

node’s parent set that might fulfill the conditions imposed by the OF, making

them qualified as preferred parent. In this case, as described later the preferred

parent will be topology formation: all nodes of the network have received DIO

messages and joined the DODAG by calculating their rank, whilst the nodes have

selected proffered parents represented by the bold plain arrows in Figure4.2

Figure 4.2 DIO messages broadcasted (indicated by arrows) to their neighbors towards leaf

nodes. The numbers indicate the node’s respective rank, i.e., their logical distance to the root.

16 Design Algorithm for WSN’s With RPL Using Open Source

4.3 Traffic Flows Supported by RPL

By default, RPL provides a mechanism for multipoint-to-point (MP2P) data

traffic from nods within the network to the root node. This traffic flow is called

"upward" and is enabled by the DIO mechanism. RPL also provides a mechanism

to support "downward" traffic flow, which is needed to enable point-to-multipoint

(P2MP) or point-to-point (P2P) traffic patterns. Downward routes are established

using Destination Advertisement Object (DAO) messages. P2P traffic is routed

"upwards" until it reaches a common ancestor which knows a route "down" the

DODAG to its destination. The specification distinguishes between storing and

non-storing traffic mode. In storing mode, all nodes keep state of routes to

Figure 4.3 The parents are selected (indicated by the bold plain arrows) before the DIO message

are updated and rebroadcasted illustrated in Figure1.7 This Figure shows all parents selected

when the DIO message has propagated to the leaf nodes. The rules deciding the selection of

parents are described

 other nodes. In non-storing mode, intermediate nodes do not know any

downward routes, so packets are always routed to the root node of its DODAG

and then source-routed to its destination. In respect to Figure 4.3, the direction

from the leaf nodes towards the DAG roots is referred to as the "up" direction.

Hence, the direction from the DAG roots towards the leaf nodes are referred to

17 Design Algorithm for WSN’s With RPL Using Open Source

as the down direction. A node’s rank defines the node’s individual position in the

DODAG, relative to other nodes with respect to the DODAG root. Rank strictly

increases in the "down" direction and strictly decreases in the "up" direction.

How the rank is calculated depends on the DAG’s Objective Function (OF).

Witch OF the DODAG uses are identified by the Objective Code Point (OCP).

The rank is also used when selecting a parent, where traffic is sent on the path

towards the DODAG root (which has the lowest rank in the DODAG)

4.4 RPL Control Messages
This section will describe the three different messages used by RPL: DIO, DAO

and DIS messages, and fields included. Transmission scheduling rules for the

different RPL messages are also presented

4.4.1 DODAG Information Object (DIO)
Transmission scheduling rules for the different RPL messages are also presented.

DODAG Information Object (DIO)The DIO Base Object shows the DIO

message format. The DIO message format consist of nine different fields of witch

four was necessary for the measurements preformed in this paper’s

implementation. The fields that are excluded are the once required when there is

multiple DODAGS. The implementation consists of a single DODAG with a

single RPL instance. Mode of Operation (MOP) - The Mode of Operation (MOP)

is always set to storing mode. Rank - 16-bit unsigned integer indicating the

DODAG rank of the node sending the DIO message. Destination Advertisement

Trigger Sequence Number (DTSN): 8-bit unsigned integer set by the node issuing

the DIO message. The Destination Advertisement Trigger Sequence Number

(DTSN) flag is used as part of the procedure to maintain downward routes. The

details of this process are described in Section Flags: 8-bit unused field reserved

18 Design Algorithm for WSN’s With RPL Using Open Source

for flags. The field MUST be initialized to zero by the sender and MUST be

ignored by the receiver.

Figure 4.4 The DIO Base Object

 4.4.2 Destination Advertisement Object (DAO)
When establishing downward routes, DAO messages are used to propagate

destination information up-wards along the DODAG. In storing mode, the DAO-

messages are unicast by the child to the selected parent(s). In non-storing mode,

the DAO message is unicasted to the DODAG root. A Destination Advertisement

Acknowledgement (DAO-ACK) message may be used. The DAO-ACK is sent

as a unicast packet by DAO recipient (a DAO parent or DODAG root) in response

to a unicast DAO message

Figure 4.5 The DAO Base Object

19 Design Algorithm for WSN’s With RPL Using Open Source

Format of the DAO Base Object

DAO message format. The DAO message format consists of seven different

fields of which four were essential for measurements done in this thesis. The

functionalities implemented are presented below as they are in the ’K’ flag

indicates that the recipient is expected to send a DAO-ACK back. Flags: The 6-

bits remaining unused in the Flags field are reserved for flags. The field MUST

be initialized to zero by the sender DAO Sequence: Incremented at each unique

DAO message from a node and echoed in the DAO-ACK message.

4.4.3 Destination Advertisement Object Acknowledgement (DAO-

ACK)

The DAO-ACK message is sent as a unicast packet by a DAO recipient (a

DAO parent or DODAG root) in response to a unicast DAO message.

Format of the DAO-ACK Base Object:

Figure 4.6 The DAO ACK Base Object

20 Design Algorithm for WSN’s With RPL Using Open Source

4.4.4 DODAG Information Solicitation (DIS)
The DODAG Information Solicitation (DIS) message may be used to solicit a

DODAG Information Object from a RPL node. Its use is analogous to that of a

Router Solicitation as specified in IPv6 Neighbor Discovery; a node may use

DIS to probe its neighborhood for nearby DODAGs.

Figure:4.7 The DIS base object

Flags: 8-bit unused field reserved for flags. The field MUST be initialized to zero

by the sender and MUST be ignored by the receiver. Reserved: 8-bit unused field.

The field MUST be initialized to zero by the sender and MUST be ignored by the

receiver. Unassigned bits of the DIS Base are reserved. They MUST be set to

zero on transmission and MUST be ignored on reception.

21 Design Algorithm for WSN’s With RPL Using Open Source

4.5 IPV6(Routing Protocol Low-Power and Lossy Networks

(LLNs):

 T. Winter and P. Thubert.in [1] analyze the IPv6 Routing Protocol Low-Power

and Lossy Networks (LLNs) are a class of network in which both the routers and

their interconnect are constrained. LLN routers typically operate with constraints

on processing power memory, and energy (battery power). Their interconnects

are characterized by high loss rates, low data rates, and instability. LLNs are

comprised of anything from a few dozen to thousands of routers. Supported traffic

flows include point-to-point (between devices inside the LLN), point-to-

multipoint (from a central control point to a subset of devices inside the LLN),

and multipoint-to-point (from devices inside the LLN towards a central control

point). This document specifies the IPv6 Routing Protocol for Low-Power and

Lossy Networks (RPL), which provides a mechanism whereby multipoint-to-

point traffic from devices inside the LLN towards a central control point as well

as point-to-multipoint traffic from the central control point to the devices inside

the LLN are supported. Support for point-to-point traffic is also available. On the

other hand, RPL builds upon prior research on WSNs and focuses on practical

issues such as IP compatibility; it is a new IPv6 routing protocol designed for

LLNs. It uses the 6LoWPAN (IPv6 Low Power Wireless Personal Area

Networks) [7] adaptation layer for sending IPv6 packets over LLNs data link

layer using encapsulation and header compression mechanisms. 6LoWPAN is

designed for the IEEE 802.15.4 medium access layer [8]. In the following, we

present the RPL protocol basics. B. The RPL protocol presentation RPL is an

IPv6 distance vector routing protocol for LLNs. It is designed to operate with

low memory devices, and low

22 Design Algorithm for WSN’s With RPL Using Open Source

CHAPTER NO:05

DESIGNING AND SIMULATION

5.1 THE RPL DESIGNING IN SCILAB USING NARVAL

TOOLBOX

5.1.1 SCILAB: Scilab is an open source, cross-platform numerical

computational package and a high-level, numerically oriented programming

language. It can be used for signal processing, statistical analysis, image

enhancement, fluid dynamics simulations, numerical optimization, and

modeling, simulation of explicit and implicit dynamical systems and (if the

corresponding toolbox is installed) symbolic manipulations.

5.1.2 NARVAL TOOLBOX
It is focusing on the analysis of network protocols and algorithms. In fact, each

network of communicating devices such as computers, phones or sensors, needs

to follows specific rules in order to organize and control the data exchange

between source and destination nodes. Communication protocols enable to

perform the network topology, and to propagate the data traffic between network

entities. The main goal of our toolbox is to provide a complete software

environment enabling the understanding of available communication algorithms,

but also the design of new schemes in order to improve the traffic behaviour of

any connection between two network entities.

NARVAL permits to generate random topologies according to various algorithms

such as Locality, Waxman, and Barabasi-Albert and hierarchical models. The

user can also design his own topology by providing nodes' coordinates,

visualization parameters, and also links' information. The combination of these

functions enables to build a large range of topologies with distinct routing

properties. Thus, the NARVAL module permits to study the impact of routing

algorithms on the effectiveness of transmission protocols used by data

23 Design Algorithm for WSN’s With RPL Using Open Source

communications on a network topology. We provide a set of basic functions to

create network graphs, compute routing algorithms (AODV, BFS, DFS, Bellman-

Ford, Dijkstra, Flood, Floyd-Warshall, Multiple Paths, RPL, ARC, etc.) on them

and finally make statistical analysis on the data exchange. The mobility of nodes

(Mobile/Vehicular Ad hoc NETwork MANET/ VANET) is also supported

according to models such as Random Direction, Random Walk, Random Way

Point, etc.

5.1.3 Designing of RPL tree

RPL allows redundancy in the tree (several parents) and therefore RPL actually

constructs a Destination Oriented Direct Acyclic Graph (DODAG), used to route

traffic from multipoint-to-point devices inside the network towards one or

several central control points (DODAG root(s)). Further options allow point-to

multipoint traffic from the central control point(s) to the devices as well. Building

the DODAG requires the computation of an objective function-that operates on a

combination of metrics and constraints to compute the ‘best’ path- and the usage

of new ICMPv6 (Internet Control Messages Protocol) messages adapted to the

RPL context.1) RPL messages: RPL introduces four control messages required

for DODAG construction and maintenance:

1)DIO (DODAG Information Object): broadcast message sent by the DODAG

root(s) to initially trigger the DODAG construction, and later by router nodes in

the DODAG. This message contains general information required to build the

DODAG, for instance the DODAG ID, the RPL Instance ID, the DODAG

Version Number, the emitter node rank, the objective function with

corresponding metrics/constraints.

2)DIS (DODAG Information Solicitation): message designed to be sent by a new

node to join the DODAG.

24 Design Algorithm for WSN’s With RPL Using Open Source

3)DAO (Destination Advertisement Object): message sent by the non-root

devices to permit parent nodes to record reverse paths to the multipoint

devices.4)DAO-ACK (DAO Acknowledgment): message sent to acknowledge

the reception of a DAO message

5.1.4 PATH EXTENSION ANALYSIS ON A SELECTED

TOPOLOGY
The path extension analysis has been done in respect the network simulation

environment NARVAL. Here is our approach. We first generate random network

topologies with variable size. We used the function NARVAL_T

_LocalityConnex that creates a random connex network topology in respect with

the locality method. Other methods are available, but this function generates

relevant connectivity topologies for wireless sensor networks. The locality

method is based on a radial communication range. In that model, n nodes are

randomly placed inside a square of side L The probability to create a link between

two nodes depends on their distance di and the locality radius R. If di ≤R, a link

is created. The largest connex component of the generated graph is extracted. [n,

L, R] are input parameters of the function NARVAL_T_ LocalityConnex. In our

simulations, belonged to the range [100,250]. An example is shown in Fig. 2. It

is composed by 115 nodes connected with 289 links.

25 Design Algorithm for WSN’s With RPL Using Open Source

Figure. 5.1 Random topology generated with NARVAL_T_LocalityConnex.

We first provide a complete analysis of this topology. Thereafter we will

reproduce the same analysis on many distinct topologies with different size. The

node degree distribution represents the proportion of nodes of the topology that

have x direct neighbours inside their communication range. In this case, it follows

a Gaussian distribution centered in 5.026. Then a node randomly selected will

present a high probability to have 5 direct links towards other nodes. We now

build the DODAG tree from the selected root S110 according to the RPL

algorithm.

26 Design Algorithm for WSN’s With RPL Using Open Source

Fig. 5.2 DODAG tree visualization for the root node S110

Each node selects the best parent to reach the sink node S110 in respect with a

defined objective function. In our case, we aim to optimize the propagation delay

or the path hop length between each node and the sink. As soon as the routing

table in each node is updated by the RPL algorithm. the path from each node

towards the sink can be easily retrieved. The path hop length for any

communication between two peers is varying from 2 to 15 nodes, approximately

following a Gaussian distribution centered in 8.56. The main part of our analysis

is based on the performance of the path hop length for any peer-to-peer

communication [Si, Sj] inside the defined topology. On the first hand, we

calculated this value for the path generated according to the routing tables

updated by the RPL algorithm. On the other hand, we computed the same

parameter for the path generated with the Dijkstra’s algorithm initiated from the

node Si toward the node Sj Our goal is to analyze the path extension for all peer-

to-peer communications for RPL in comparison to a shortest path algorithm.

Thus, we compute the path extension for all couple [Si, Sj] E [1:115] with Si not

equal to Sj We represents in Fig. 4 the path extension between RPL and the

Dijkstra’s algorithm for each couple of Si and Sj

27 Design Algorithm for WSN’s With RPL Using Open Source

The x-coordinate provides the first node of the connection. The y-coordinate

corresponds to the second one. The pixel value of coordinates (Si, Sj) gives the

path extension in hops (color map) for the connection between the nodes Si and

Sj. This is the difference between the path generated by the RPL algorithm and

the one computed by the Dijkstra’s algorithm.

5.1.5 SIMULATION IN NARVAL

We presented in this work a statistical analysis of the path extension generated

by the RPL algorithm for peer-to-peer communications within a small wireless

sensor network. Our goal was to study the efficiency of the specific IPv6 Routing

Protocol for Low-power and Lossy Networks that intrinsically supports point-to-

point traffic. We have shown that RPL often provides non-optimal paths for peer-

to-peer communications. In fact, data packets are following longer routes with

larger metrics than shortest paths. In this paper, we studied the effectiveness of

RPL compared to the Dijkstra’s algorithm. We analyzed peer-to-peer

communications inside random wireless sensor network topologies. We have

built a particular simulation environment named Network Analysis and Routing

eVALuation (NARVAL). This toolbox permits to generate random topologies in

order to study the impact of routing algorithms on the effectiveness of

communication protocols. In our work, we first generated many random network

topologies where we selected the location of the sink node. We built the

Destination Oriented Directed Acyclic Graph (DODAG) from the chosen sink in

respect with the RPL algorithm. We finally performed all paths between each

couple of two distinct sensor nodes and compared them to the corresponding

shortest paths obtained by the Dijkstra’s algorithm. Our approach permitted to

retrieve some statistics on the path extension between RPL and the Dijkstra’s

algorithm. We also analyzed the impact of the sink position and the network size

on this path extension. Future works will consist of studying and designing new

28 Design Algorithm for WSN’s With RPL Using Open Source

specific P2P protocols adapted to 6LoWPAN networks. This initial work is based

on random network topologies of reasonable size for a sensor cluster, e.g. less

than 250 nodes. We plan to analyze if the results will scale for larger networks,

composed by more than 1000 nodes. However, it becomes necessary to design

clusters and to take care of the communications between clusters in a large sensor

network. We also plan to test other objective functions such as interference from

the obstacles or other radio sources on the channel, remaining energy in each

node, security, etc. A more effective peer-to-peer communication protocol needs

also to be taken into account in our future research.

29 Design Algorithm for WSN’s With RPL Using Open Source

5.2 PROGRAM TO BUILD RPL TREE IN SCILAB:

n=289;//network size

L=1000;//network squared area side

dmax=100;//Locality radius

[g]=NL_T_LocalityConnex(n,L,dmax);//generation of a topology

in//respect with the Locality method

i=NL_F_RandInt1n(length(g.node_x));//selection of the source node

dw=2;//display parameter

ind=1;//window index

g.node_diam(i)=50;//node diameter

g.node_border(i)=10;//node border

g.node_color(i)=5;//node color

[f]=NL_G_ShowGraphN(g,ind);//graph visualization

[dist,pred]=NL_R_Dijkstra(g,i);//application of NL_R_Dijkstra

ETX=5;

[v]=NL_F_RandVector0nminus1(length (g. head), ETX);//update of weigth

v=v+1;

g.edge_weight=g.edge_length;

g.edge_length=v;

xc=l/2;//area center

yc=l/2;

[s]=NL_G_NodeClose2XY(g,xc,yc);//root node

c=5;//5 possible routes

[pred,dist,ra,DAG,DIO]=NL_R_RPL(g,s,c);//application of NL_R_RPL

[go]=NL_R_RPLPlot(g,pred);//highlight RPL tree

ind=1;//window index

f=NL_G_ShowGraphN (go, ind);//graph visualization

30 Design Algorithm for WSN’s With RPL Using Open Source

5.3 IMPLEMENTATION OF RPL IN CONTIKI OS USING

COOJA SIMULATOR:

CONTIKI OS: Contiki is an operating system for networked, memory-

constrained systems with a focus on low-power wireless Internet of

Things devices. Extant uses for Contiki include systems for street lighting, sound

monitoring for smart cities, radiation monitoring, and alarms.[1] It is open-source

software released under a BSD license.

Contiki provides three network mechanisms: the uIP TCP/IP stack,[5] which

provides IPv4 networking, the uIPv6 stack,[6] which provides IPv6 networking,

and the Rime stack, which is a set of custom lightweight networking protocols

designed for low-power wireless networks. The IPv6 stack was contributed by

Cisco and was, when released, the smallest IPv6 stack to receive the IPv6

Ready certification.[7] The IPv6 stack also contains the Routing Protocol for Low

power and Lossy Networks (RPL) routing protocol for low-power lossy IPv6

networks and the 6LoWPAN header compression and adaptation layer for IEEE

802.15.4 links.

COOJA SIMULATOR: Cooja has been proven to be an ideal tool for the

simulation of RPL in WSNs, there are challenges involved in its use. This is

particularly pertinent in regard to the lack of documentation available. The

Contiki website may be a first port of call in regard to Cooja, and provides an

image of Instant Contiki which can then be used with the virtualization tool

VMware. However, once Instant Contiki is successfully started, the Contiki

website can then be referred to for nothing more than brief instructions regarding

simple network setup on Cooja.

31 Design Algorithm for WSN’s With RPL Using Open Source

Fig5.3 Initial Cooja Simulator Screen

With this the sum total of any official documentation regarding Cooja, with the

majority of support being provided within internet discussion board. Cooja to be

able to create network layouts, compile motes, examine output using the Sensor

Data Collect plugin and also utilize scripts to produce more fine-grained results.

From this starting point, we move onto more complex tasks including the

manipulation of the Cooja code and the use of Cooja in physical nodes. First

create the simulation environment in cooja simulator, add some motes in Add

motes, create new mote type and then Sky mote from the resulting drop-down

menu The Sky mote is the simplest of motes for use within a WSN and ideal for

initial configurations within a Cooja simulation. After creating the cooja

simulation initialized the simulation and Add motes and Locate Mote Firmware

[10]

32 Design Algorithm for WSN’s With RPL Using Open Source

Figure 5.4 Initial cooja simulation Screen with added motes and border router

Figure 5.5 Connection of IP of Border router

33 Design Algorithm for WSN’s With RPL Using Open Source

In the above Figure 5.5, we are making the connection of border router with other

nodes in cooja simulator and set the IP address. A great advantage of Cooja is

that the motes used in a Cooja simulation use the same firmware as actual physical

devices. At this point the firmware to be used to create the simulated mote must

be located in order to create and compile it. It should be noted that the location of

the firmware is extremely important. Compile the cooja simulation here we are

adding 5 motes and initialize the network. and set the IP address of each node We

are using Simulation Script Editor to simulate the program which is java script

Figure 5.6. Cooja compilation screen

Cooja has sophisticated tools for collecting data from motes, however, it is not

immediately obvious how to enable this in a simulation. For data collection in a

network with a sink and several senders the collection should be performed from

the viewpoint of the sink. This will then display data for all the senders in the

network. To enable the Sensor Data, collect view there are two options. Firstly,

right-click the sink mote, select ‘Mote tools for Sky 1’and then ‘Collect View

‘Once the simulation is complete a great amount of data will be available from

the Sensor Collect View. Some of this information is displayed graphically which

34 Design Algorithm for WSN’s With RPL Using Open Source

displays the average power consumption of the motes in the network and see

Sensor Collect Node Info

Figure 5.7 After simulation screen

 After simulation, the IP address is present with the help os IPV6 It is also possible

to display the Border Router’s routing table by opening up a web page and

entering the IPv6 address of the Border Router as in Figure 5.8

35 Design Algorithm for WSN’s With RPL Using Open Source

Figure 5.8 IPv6 address of the Border Router

This shows a snapshot of routes established, however, these may be in a constant

state of flux, especially with regard to motes on the fringes of the network. The

output is present at web browser

36 Design Algorithm for WSN’s With RPL Using Open Source

Figure 5.9 readings of particular single node through browser/explorer

 It shows the temperature how much amount of power consume during

transmission and reception with neibouring motes and readings of aparticular

motes in terms of temperature and light which is shown in above figure 5.9

37 Design Algorithm for WSN’s With RPL Using Open Source

IP address and details of packet loss and how much time is required is shown

below in figure 5.10

Figure 5.10 Collect view data

38 Design Algorithm for WSN’s With RPL Using Open Source

CHAPTER 6

SIMULATION RESULTS AND DISCUSSIONS

In the simulation, we create the RPL tree in scilab environment and Implemented

RPL routing protocol in contiki os using cooja simulator to analyzed the

temperature of WSN, Power consumption during communication with

neighboring nodes border router and sensor nodes and packet transmission and

reception and loss of packet during transmission

Figure 6.1 Design of RPL tree in scilab

39 Design Algorithm for WSN’s With RPL Using Open Source

Figure 6.2 Implementation result of RPL tree in Contiki os – cooja simulator

Figure 6.3 Measuring parameter using RPL Algorithm

40 Design Algorithm for WSN’s With RPL Using Open Source

CHAPTER 7

APPLICATIONS

• Environmental/Habitat monitoring

• Acoustic detection

• Seismic Detection

• Military surveillance

• Inventory tracking

• Medical monitoring

• Smart spaces

• Process Monitoring

41 Design Algorithm for WSN’s With RPL Using Open Source

CHAPTER 8

FUTURE SCOPE

• Real time implementation of WSN and RPL protocol

• Measuring more physical as well as environmental parameter.

• In further real time we measure as well as control the parameters

like temperature, light, humidity, etc.

42 Design Algorithm for WSN’s With RPL Using Open Source

CHAPTER 9

CONCLUSION

This study proposes design routing algorithm for WSNs called RPL that support

both unicast and multicast traffic simultaneously. However, since multicast traffic

model could be employed in many situations and could be managed by various

kinds of multicast routing protocols’ uses Prim-Dijkstra Algorithm, to find

shortest path. Designing RPL in scilab used the NARVAL toolbox and Designing

RPL in scilab gives the shortest path between two nodes and creating the netwok

topology and contiki is operating system which is design by IOT in contiki os we

are using cooja simulator for monitoring different parameters like temperature

and light of WSN and how many packet are transmitted and receive during

transmission and how many packets are receive in terms of byte and how many

packet are lost

43 Design Algorithm for WSN’s With RPL Using Open Source

REFRENCES

[1] T. Winter and P. Thubert. “RPL: IPv6 Routing Protocol for Low Power and

Lossy Network.” Internet Draft, draft-ietf-roll-rpl-07, Mar. 2010

[2] T. Winter, P. Thubert et al. “RPL: IPv6 Routing Protocol forLow power and

Lossy Networks,” IETF Internet Draft draft-ietf-roll-rpl-19 (work in progress),

March 2011.

 [3] Ines El Korbi∗, Mohamed Ben Brahim∗, Cedric Adjih†and Leila Azouz

Saidane “Mobility Enhanced RPL for Wireless Sensor Networks” ∗National

School of Computer Science, University of Manouba, 2010 Tunisia Inria Paris

Rocquencourt, Domaine de Voluceau, 78153 Le Chesnay Cedex, France

 [4] Annop Monsakul” M-RPL: A Design Algorithm for WSNs with Mixed

traffic” Journal of Advances in Computer Network Vol. 4, No.2, June 2016

 [5] W. Heinzelman, A. Chandrakasan and H. Balakrishnan, ”Energy-Efficient

Communication Protocol for Wireless Microsensor Networks”, In proc. of the

33rd Hawaii International Conference on System Sciences (HICSS ’00), January

2000.

[6]S. Lindsey, C. Raghavendra, “PEGASIS: Power-Efficient Gathering in

Sensor Information Systems”, In proc. of the IEEE Aerospace Conference,

2002, Vol. 3, pp. 1125-1130.

[7]Z. Shelby and C. Bormann, ”6LoWPAN: The Wireless Embedded Internet”,

John Wiley & Sons, year 2009.[8]IEEE Standard for Information technology

802.15.4 - 2006, ”Part 15.4:Wireless Medium Access Control (MAC) and

Physical Layer (PHY)specifications for Low Rate Wireless Personal Area

Networks (LR-WPANs)”, 2006.

[9]Y. Yao and J. Gehrke, ”The cougar approach to in-network query processing

in sensor networks”, in ACM SIGMOD Record, Volume 31 Issue 3, September

2002

10]Contiki, “Contiki: The Open Source Operating System for the Internet of

Things,”2015. [Online]. Available: http://www.contiki os.org/. [Accessed: 09-

Nov-2015].

44 Design Algorithm for WSN’s With RPL Using Open Source

