

KALSEKAR TECHNICAL CAMPUS, NEW PANVEL
Approved by : All India Council for Technical Education, Council of Architecture, Pharmacy Council of India New Delhi,
Recognised by : Directorate of Technical Education, Govt. of Muharashtra, Affiliated to : University of Mumbai.

DEPARTMENT OF CIVIL ENGINEERING

SCHOOL OF ENGINEERING & TECHNOLOGY

□ SCHOOL OF PHARMACY

DEPARTMENT (OF CIVIL	ENGINEERING			

REV:00	QUESTION PAPER CLASS TEST 01	EXM-04(a)
CLASS:- B.E. Ist		SEM:- VII
	stress Concrete (EI)	DATE:- / /
DURATION:-		MARKS:- 20

0	01 Attempt any two of the following: (10 Marks each)	marks	CO
a)	5) Explain the concept of load balancing in prestressed concrete beam and suggest a suitable cable profile for beam carrying two concentrated loads at quarter of the span. 6) What are the factors influencing losses due to creep? explain in detail creep in concrete	10	C01
	with age		

-			-
b)	A rectangular concrete beam of C/S 40 cm deep and 30 cm wide is prestressed by means of 15 wires of 5 mm diameter located 7.5 cm from the bottom of the beam and 3 wires of dia 5 mm, 3.5 cm from the top. Assuming the prestress in the steel as 860 N/mm ² calculate the stresses at the extreme fires of the mid span when the beam supporting its own weight over a span of 7 m. if the UDL of 6 kN/m is imposed. Evaluate the maximum working stress in the concrete.	10	CO2
c)	A concrete beam with a single overhanging is simply supported at A and B over a span of 8 m and overhang BC is 2 m. the beam is of rectangular section 300 mm wide and 900 mm deep and supports a ULD 3.52 kN/m over the entire length in addition to self weight. Determine the profile of the prestressing cable with an effective force of 500 kN which can balance the dead and live load. Sketch the profile of the cable along the length of the beam.	10	CO2

KALSEKAR TECHNICAL CAMPUS, NEW PANVEL

Approved by : All India Council for Technical Education, Council of Architecture, Pharmacy Council of India New Delhi, Recognised by : Directorate of Technical Education, Govt. of Maharashtra, Affiliated to : University of Mumbai.

SCHOOL OF ENGINEERING & TECHNOLOGY

□ SCHOOL OF PHARMACY

MUMBAI - IHOIT	DEPARTMENT OF CIVIL ENGINEERING		
REV:00	QUESTION PAPER CLASS TEST 01		EXM-04(b)
CLASS:- BE		SEM:- VI	
SUBJECT:- SWM(Elective-1)		DATE:-	/ 08 / 2017
DURATION:- 60	MARKS:-	20	

	CLASS TEST 01		
0.0	1 Attempt any Five: (10 Marks)	marks	СО
a) Leachate is: (1) a by-product of waste incineration (2) a type of waste storage container used in "clean coal" plants (3) a non-recyclable type of plastic (4) liquid that results when garbage substances in a landfill dissolve in water		02	CO2
b)	Which one of the below component is not a part of collection system? (1) Collection points (2) Storage containers (3) Transfer station (4) Composting	02	CO3
c)	Where does municipal waste come from? (1) Industry and trade. (2) Hospitals and medical facilities. (3) Businesses and offices. (4) Households and local councils.	02	CO1
d)	Collection accounts for of a Solid Waste budget. (1) 70 % (2) 100% (3) 30 % (4) 40%	02	CO3

						die
e)	Two biodegradable of	components of	f municipal solid v	waste are	02	CO:
	. (1) plastics and w	ood (2) car	dboard and glass			
	(3) leather and tin	cans (4) food	wastes and garde	n trimmings		
f)	A coastal city produc	es municipal	solid waste (MSW	(v) with high moisture content, high	02	CO
				nnic materials. The most effective and	3-2	
	sustainable option for	the state of the second st				3
	(1) Composting	(2) Dumping	in sea (3) Incine	ration (4) Landfill		
Q.0	2 Attempt any One:	(05 Marks)				
a)	What are the sources	of solid waste	e? explain any two	sources	05	CO1
b)	Explain proximate an	d ultimate and	alysis		05	CO2
Q.0	3Attempt any One: (05 Marks)				
a)	Estimate the moisture	content of a	solid waste sample	e with the following	05	CO2
	composition	Wet mass	Moisture %			
	Food waste	15%	70	7		
	Paper	45%	6			
	Cardboard	10%	5			
	Plastics	10%	2			
	Garden trimmings	10%	60			
	Wood	5%	20			
	Tin cans	5%	3			
b)	Explain the types of n	nunicipal solic	d waste collection	system	05	CO3

KALSEKAR TECHNICAL CAMPUS, NEW PANVEL

Approved by : All India Council for Technical Education, Council of Architecture, Pharmacy Council of India New Delhi, Recognised by : Directorate of Technical Education, Govt. of Maharashtra, Affiliated to : University of Mumbai.

SCHOOL OF ENGINEERING & TECHNOLOGY

□ SCHOOL OF PHARMACY

	414				
	WAVI MUMBAI - INDIA	DEPARTMENT OF CIVIL ENGINEERING			
REV:00 QUESTION PAPER CLASS TEST 01		EXM-04(a)			
CLASS: \$E-CE (SECOND SHIFT-II)		SEM:- VI			
		DESIGN AND DRAWING-II	DATE:23/0	8/2017	
DUF	RATION:- 60 min	•	MARKS:- 20	0	
Q.0	1 Attempt any to	vo: (08 Marks)	*	marks	СО
a)		te on green building		04	CO6
b)	Explain the prin	ciples of town planning		04	COE
c)	Write a shot not	e on green belt	7	04	CO6

a)	Oz Attempt any one: (12 Marks) It is proposed to plan and design a Primary Harks		
I	It is proposed to plan and design a Primary Health Centre (P.H.C.) in Rural area with the following facilities as R.C.C. framed structure is (G+1) storied only. Following are the facilities to be provided on both the floors. Assume floor-floor height as 3.6 m. i. Entrance & Reception = 30 sq. m. ii. Doctor's Rooms = 4 no. (each 20 sq. m.) iii. Nurses-Room = 20 sq. m. iv. Operation Theatre = 50 sq. m. v. General Ward = 100 sq. m. vi. Ladies Ward = 75 sq. m. vii. Store Room = 20 sq. m. viii. Medical Store = 30 sq. m. ix. Changing Room = 20 sq. m. Provide Toilets, Passages etc. as per the Bye-laws & Regulations. Draw the following with suitable scale. 1. Line Plan of Ground Floor.	12	CO1 CO2 CO3
	2. Line Plan of First Floor		

REV:00

PAPER CLASS TEST 01 **QUESTION**

SEM:- VII

CLASS:- B.E. CIVIL SHIFT II

SUBJECT:- QSEV

DATE: 22/08 / 2017

EXM-04(a)

DURATION:- 60 min. (3 to 4 pm)

MARKS:- 20

Q.	01 (08 Marks)	marks
	Define Estimate. What are the purposes of estimating?	04
b)	Mention the importance of an approximate estimate. List the different methods of	04
	preparing an approximate estimate.	

Q.02 (10 Marks)

With reference to the plan and section shown on the backside ,estimate the quantities for 12 the following items using Centre line method OR Long wall Short wall method. Prepare a proper measurement sheet.

1) earthwork in Excavation.

2) Lime Concrete in Foundation.

3) Brickwork in foundation & plinth.

4) 2.5 cm thick DPC.

ANJUMAN-FISLAM'S

KALSEKAR TECHNICAL CAMPUS, NEW PANYEL

Sprinder Sidner General to Behavistation, spring of Annuaria, Principle and Andread to Behavistation of Annuaria, Principle and Annuaria of General Ondo General Ondo General Ondo General Ondo General Ondo Gene

SCHOOL OF ENGINEERING & TECHNOLOGY
SCHOOL OF PHARMACY
SCHOOL OF ARCHITECTURE

REV:00

CLASS:- B.E. CIVIL SHIFT II

QUESTION PAPER CLASS TEST 01

SEM:- VII

DATE:- 23/08 / 2017

EXM-04(a)

SUBJECT:- IRRIGATION ENGINEERING

MARKS:- 20

DURATION:- 60 min. (10:30 to 11:30 am)
Q.01 (10 Marks)

a)	Enlist any 12 benefits of Irrigation.
b)	Write a note on Check Flooding.

03

c) What is National water policy? State few major provisions of it.

03

marks 04

Q.02 (10 Marks)

The base period,intensity of Irrigation & duty of various crops under a canal system are given in the table below. Find the capacity of the reservoir if the canal losses and Reservoir losses are 20 % and 12 % respectively.

10

Crop	Base period (Days)	Duty at field (Hectare/cumecs)	Area under crop (Hectares
Wheat	120	1800	4800
Sugarcane	360	800	5600
Cotton	200	1400	2400
Rice	120	900	3200
Vegetables	120	700	1400

(1) house sewer (2) main sewer (3) outfall sewer (4) none of these.

order of: (1) 500 litres (3) 100 litres (2) 200 litres (4) none of these.

For Indian .cities, like Delhi or Calcutta, the per capita sewage production may be of the

Find the incubation temperature for BOD₅ (1) 20°C (2) 27°C (3) 37° C (4) 40° C

KALSEKAR TECHNICAL CAMPUS, NEW PANVEL

Approved by : All India Council for Technical Education, Council of Architecture, Pharmacy Council of India New Delhi,

SCHOOL OF ENGINEERING & TECHNOLOGY

02

02

CO1

CO3

	AKTE	Recognised by : Directorate of Technical Education, Govt. of Maharashtra, Affiliated to : University of Mumbai.	■ □ SCHOOL OF ARC	HITECTURE	
	MAY MUMBAL - IHOLA	DEPARTMENT OF CIVIL ENGINEERING		L. Division de	
F	REV:00	QUESTION PAPER CLASS TEST 01		EXM-04(b)
CLA	SS:- BE (Shift 2		SEM:VII		
SUB	JECT:- EE 2		DATE:-23	/ 08 / 20)17
DUF	RATION:- 60 r	min.	MARKS:- 2	0	
		CLASS TEST 01 / 02			
Q.0	1 Attempt any	Five: (10 Marks)		marks	СО
a)		l is used to control thermal pollution (1) Cooling Tower (2) Cd 2) (4) None of the above	ooling Pond	02	CO6
b)	^	ise level for residential and business urban areas as per IS:49: dB (2) 40-50 dB (3) 50-60 dB (4) 70-80 dB	54-1968	02	CO6
c)	The sewer whi	ch transports the sewage to the point of treatment, is called:	~ 1	02	CO2

f)	The maximum sound level, beyond which it is certainly regarded as pollutant, is (1) 20 dB (2) 40 dB (3) 60 dB (4) 80 dB	02	CO6
Q.0	2 Attempt any One: (05 Marks)		
	Explain effect of noise pollution with control measures.	05	CO6
	Differentiate between combined and separate system of sewage	05	CO1
Q.0	3Attempt any One: (05 Marks)		- 100
a)	Calculate the BOD of raw sewage. If 2.5 ml of raw sewage has been diluted to 250 ml and the D.O. concentration of the diluted sample at the beginning of the BOD test was 8 mg/l, and 5 mg/l after 5-day incubation at 20°C;	05	CO3
b)	Difference between Conservancy system and Water carriage system	05	CO2

Ó

KALSEKAR TECHNICAL CAMPUS, NEW PANVEL
Approved by: All India Council for Technical Education, Council of Architecture, Pharmacy Council of India New Delhi,
Recognised by: Directorate of Technical Education, Govt. of Maharashtra, Affiliated to: University of Mumbai.

DEPARTMENT OF CIVIL ENGINEERING

SCHOOL OF ENGINEERING & TECHNOLOGY

□ SCHOOL OF PHARMACY

	DEPARTMENT OF CIVIL ENGINEERING	
REV:00	QUESTION PAPER CLASS TEST 01	EXM-04(a)
CLASS:-BE Civil Shift I		SEM:- VII
SUBJECT:- Irrigation I		DATE:-2/08/2017
DURATION:- 60 min		MARKS:- 20

0.0	1 Attempt any Two	o : (12 Marks)			marks	СО
a)			How Irrigation helps in gro	owing the economy.	06	CO1
b)		nd area of reservoir is 5		capacity if canal losses are	. 06	CO2
	Crop	B(Days)	D ha/m³/sec	Intensity %		
	Wheat	120	2000	20		
	Rice	140	900	15		
	Cotton	180	1600	10		
	Sugarcane	360	2500	20		
c)	Derive Relation be	tween Duty Delta and E	Base Period (meter and feet).	06	CO2
	2					
Q.0	2 Attempt any Two	o: (08 Marks)				
a)	What do you mean	by Irrigation Efficienci	es		04	CO2
b)		ods of Irrigation explair			04	CO2
c)		sketch Hydrological Cyc	And the second s		04	CO3

KALSEKAR TECHNICAL CAMPUS, NEW PANVEL

Approved by : All India Council for Technical Education, Council of Architecture, Pharmacy Council of India New Delhi,
Recognised by : Directorate of Technical Education, Govt. of Maharashtra, Affiliated to : University of Mumbai.

SCHOOL OF ENGINEERING & TECHNOLOGY □ SCHOOL OF PHARMACY

AUMBAI - INO	DEPARTMENT OF CIVIL ENGINEERING	
REV:00	QUESTION PAPER CLASS TEST 01	EXM-04(a)
CLASS:-BE (CIVIL)	- SHIFT 1	SEM:-VII
SUBJECT:-LIMIT STATE METHOD OF REINFORCED CONCRETE STRUCTURES		DATE:-22/08/2017
DURATION:- 60	min.	MARKS:- 20

0.0	21 Attempt any TWO: (08 Marks)	Marks	CO
a)	Write a note on Limit State Method of RCC design	04	CO2
b)	Draw laboratory stress-strain curve & design stress-strain curve for concrete. Explain the design stress-strain curve in brief.	04	CO3
c)	Using the stress block, derive the expression for finding the Neutral Axis depth for a singly reinforced section.	04	CO3
Q.0	2 Attempt any ONE: (12 Marks)		
a)	A rectangular beam, $b = 230$ mm, $d = 520$ mm. $A_{st} = 4$ - 16 mm dia. Find the depth of NA & specify the beam type. Also, find the NA depth if $A_{st} = 4$ -20 mm dia. Materials are M20/Fe415.	12	CO3
b)	A singly reinforced rectangular beam is subjected to a bending moment of 35 kNm at working load. b = 210 mm. Find the depth & steel area for balanced design. Use M20/Fe250 materials.	12	CO3
c)		12	CO3

KALSEKAR TECHNICAL CAMPUS, NEW PANVEL
Approved by a All India Council for Technical Education, Council of Architecture, Phormacy Council of India New Delhi, Recognised by Directorate of Technical Education, Govt. of Maharashtra, Affiliated to University of Mumbai.

□ SCHOOL OF PHARMACY

DEPARTMENT	OF (CIVIL	ENGIN	EERING
------------	------	-------	-------	--------

REV:00	QUESTION PAPER CLASS TEST 01	EXM-04(a)
CLASS:-BE Civil Shift I		SEM:- VII
SUBJECT:- Irrigation Engineering		DATE:-21/08/2017
DURATION:- 60 min		MARKS:- 20

DUF	RATION:- 60 min.			MARKS:- 20		
Q.0	1 Attempt any Two	: (12 Marks)			marks	CO
a)	Explain Importanc	e of Irrigation in India.	How Irrigation helps in gro	owing the economy.	06	CO1
b)	Culturable comma 5% and reservoir le		0,000 ha Find out reservoir	r capacity if canal losses are	06	CO2
	Crop	B(Days)	D ha/m³/sec	Intensity %		
	Wheat	120	2000	20		
	Rice	140	900	15		
	Cotton	180	1600	10		
	Sugarcane	360	2500	20		
c)	Derive Relation be	tween Duty Delta and B	Base Period (meter and feet).	06	CO2
-						
Q.02	2 Attempt any Two	: (08 Marks)		ji ji		
a)	What do you mean	by Irrigation Efficienci	es		04	CO2
b)	What are the Metho	ods of Irrigation explain	with help of sketches.		04	CO2
c)	Explain with neat s	ketch Hydrological Cyc	ele.	3	04	CO3

KALSEKAR TECHNICAL CAMPUS, NEW PANVEL

Approved by : All India Council for Technical Education, Council of Architecture, Pharmacy Council of India New Delhi, Recognised by : Directorate of Technical Education, Govt. of Maharashtra, Affiliated to : University of Mumbai.

☑ SCHOOL OF ENGINEERING & TECHNOLOGY

□ SCHOOL OF PHARMACY

□ SCHOOL OF ARCHITECTURE

DEPARTMENT OF CIVIL ENGINEERING

REV:	CLASS TEST 01 EXM-04(a)		
CLASS:-	B.E. CIVIL ENGINEERING SEM:- VII		
UBJECT	:- QUANTITY SURVEY, ESTIMATION & VALUATION DATE:- 22,	/08/201	.7
	DN:- 60 min. MARKS:- 20		
Note:- A	ttempt any ONE question. Each main question carries 20 Marks.	marks	СО
Q.1 a)	Work out the quantities of following items of work by referring drawings given below:-1) PCC (1:2:4) in foundation bed. 2) 1 st class brickwork in foundation. 3) 2.5 cm. thick concrete DPC	12	1
b)	Explain:- 1) Contingencies 2) W.C.E 3) Administrative Approval 4) Technical Sanction	08	1
Q.2 a)	Prepare an approx. estimate for G+4 R.C.C framed building located in New Panvel. Bldg. consist of 5 flats on each floor. Each flat has carpet area of 70 Sq. meter. Provide appropriate amount for contingencies & work charged establishment. Assume suitable rate of construction.	12	1
b)	Explain 1) Centre Line method 2) Rules of deduction for plastering as per IS 1200	08	1

ALL THE BEST

ANJUMAN-I-ISLAM'S KALSEKAR TECHNICAL CAMPUS, NEW PANVEL

School of Engineering & Technology

Subject: Environmental engineering - II

Marks: 20

Class: B.E. Shift-I

UT-X-I

Date: 23/08/17

Duration: 1Hr/s

Branch: Civil

Instructions: 1) Question No. 1 is Compulsory.

2) Assume any suitable data but state the same.

3) Illustrate answers with sketches wherever necessary.

Q. No.	Questions 3) Illustrate answers with sketches wherever necessary.	CO addressed	Marks
1	Attempt any five of the following		10
а	The sewer which transports the sewage to the point of treatment, is called: A) house sewer B) main sewer C) outfall sewer D) none of these	CO1	
b	Gases, which are generally evolved during anaerobic processes are: A) CO ₂ +NH ₃ +H ₂ S B) CO ₂ +NH ₃ +H ₂ S+CH ₄ C) CO ₂ +NH ₃ +SO ₂ D) CO ₂ +NH ₃ +SO ₂ +CH ₄	CO3	
С	BOD5 represents 5 days biochemical oxygen demand at a temperature of: A) 0°C B) 20°C C) 30°C D) none of these	CO3	
d	The phenomenon by virtue which a soil is clogged with sewage matter, is called A) Sewage farming B) Sewage sickness C) Sewage bulking D) none of these	CO4	
e	DO concentration fall to zero, causing anaerobic conditions in a river reach, called A) Zone of active decomposition B) Zone of recovery C) Zone of degradation D) none of these	CO4	
f	The maximum sound level, beyond which it is certainly regarded as pollutant, is A) 20dB B) 40dB C) 60 dB D) 80dB	CO6	
g	The unit for measuring frequency of sound is A) decibel (dB) B) hertz (Hz) C) doboson unit(DU) D) none of these	CO6	
			(0.5)
2	Attempt Any one of the following:	60.6	(05)
a	Prove that $50dB + 70dB \neq 120 db$.	CO6	
b	Describe conservancy & water-carriage systems with their advantages & disadvantages.	CO1	
		(4) (4) (4) (4) (4) (4) (4)	(0.5)
3	Attempt Any one of the following:	000	(05)
a	The 5 day 30° C BOD of sewage sample is 110mg/l. Calculate its 5 day 20° C BOD. Assume $K_{20} = 0.1$.	CO3	
b	Write a short note on: Dilution method Vs Land disposal method for disposal of sewage.	CO4	

b)

ANJUMAN-I-ISLAM'S

KALSEKAR TECHNICAL CAMPUS, NEW PANVEL

Approved by : All India Council for Technical Education, Council of Architecture, Pharmacy Council of India New Delhi, Recognised by : Directorate of Technical Education, Govt. of Maharashtra, Affiliated to : University of Mumbai.

DEPARTMENT OF CIVIL ENGINEERING

	Par Alchiest of Civil Englishme		
REV:00 CLASS TEST 01			
CLASS:- B.E. CIVIL ENGINEERING			
SUBJECT:	QUANTITY SURVEY, ESTIMATION & VALUATION		
DURATIO	N:- 60 min.		
Note:- At	tempt any ONE question. Each main question carries 20 Marks.		
Q.1 a)	Work out the quantities of following items of work by referring draw below:-1) PCC (1:2:4) in foundation bed. 2) 1 st class brickwork in fou 3) 2.5 cm. thick concrete DPC		
b)	Explain:- 1) Contingencies 2) W.C.E 3) Administrative Approval 4) Technical Sanction		
Q.2 a)	Prepare an approx. estimate for G+4 R.C.C framed building locate Panvel. Bldg. consist of 5 flats on each floor. Each flat has carpet area meter. Provide appropriate amount for contingencies & work		

establishment. Assume suitable rate of construction.

Explain 1) Centre Line method 2) Rules of deduction for plastering as per

ALL THE BEST

ANJUMAN-I-ISLAM'S KALSEKAR TECHNICAL CAMPUS, NEW PANVEL School of Engineering & Technology Department of Civil Engineering

LASS	UT-I SEM: - VII DATE: - 2	017
SUBJE	SUBJECT: - LSM RCS MARKS: - 20	
DURA		s CO
	4	
Q.1	Attempt any TWO. Attempt any TWO. 2	CO 2
a.	Illustrate the concepts of Characteristic Strength and Characteristic Box of Characteristic Strength and Characteristic Strength and Characteristic Box of Chara	CO 2
b.	What do you interpret by Limit State of Collapse and Limit State of Serviceability: Diam and the limit states.	CO 3
c.	Compare T beams with Rectangular beams.	CO 3
d.	Give your opinion on using combination of bent up bars and vertical surrups as successions.	
Q.1	Attempt any TWO.	CO 3
a.	A simply supported main beam has a span of 4.2 in and it carries a form left support. Design the also carries a reaction of secondary beam of magnitude 20 kN at a distance of 1.8 m from left support. Design the beam for flexure using M 20 and Fe 415.	
b.		CO 3
c	-	CO 3
		8 CO3
d.	Find ultimate moment of resistance for a 1 ocali maying man of semi-forced with 5 bars of 25 mm dia. and thickness of slab as 100 mm. It has an effective depth of 560 mm and is reinforced with 5 bars of 25 mm dia. Use M 20 and Fe 415. Use M 20 and Fe 415. (1 continued the final semi-forced with 5 bars of 25 mm dia.)	
	ocation of NA =2) + (Depth of NA=2) + (MIX calculation +) of	P.T.O.

IS 456: 2000

Table 19 Design Shear Strength of Concrete, τ_c , N/mm² (Clauses 40.2.1, 40.2.2, 40.3, 40.4, 40.5.3, 41.3.2, 41.3.3 and 41.4.3)

74		And desired distribute and the Control of the Contr	Coper	CORCLEGE CT 1 WOR	
	MIS	M 20	M 25	M 30	M 35
3	(2)	(3)	(4)	(5)	(6)
\$0.15	0.28	0.28	0.29	0.29	0.29
0.25	0.35	0.36	0.36	0.37	0.37
0.50	0.46	0.48	0.49	0.50	0.50
0.75	0.54	0.56	0.57	0.59	0.59
1.00	0.60	0.62	0.64	0.66	0.67
1.25	0.64	0.67	0.70	0.71	0.73
1,50	0.68	0.72	0.74	0.76	0.78
1.75	0.71	0.75	0.78	0.80	0.82
2.00	0.71	0.79	0.82	0.84	0.86
2.25	0.71	0.81	0.85	0.88	0.90
2.50	0.71	0.82	0.88	0.91	0.93
2.75	0.71	0.82	0.90	0.94	0.96
3,00	0.71	0.82	0.92	0.96	0.99
above					

NOTE — The term A_s is the area of longitudinal tension reinforcement which continues at least one effective depth beyond the section being considered except at support where the full area of tension reinforcement may be used provided the detaiting conforms to 24.2.2 and 26.2.3