SE-sem-IV- CBSGS- Computers- AMIN

22/11/12

Q.P. Code:23022

	[Time: Three Hours] [M	arks:80]
	Please check whether you have got the right question paper. N.B: 1. Question.No.1 is compulsory. 2. Attempt any three questions from Q.2 to Q.6 3. Use of statistical table permitted. 4. Figures to the right indicate full marks.	
Q.1	a) Evaluate $\int_C \log z dz$ where C is the unit circle in the z - plane.	05
	b) Find the eigen values of the adjoint of $A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$	05
	c) If the arithmetic mean of regression coefficient is p and their difference is 2q, find the correlation coefficient.	05
	d) Write the dual of the following L.P.P. Maximise $Z = 2x_1 - x_2 + 4x_3$ Subject to $x_1 + 2x_2 - x_3 \le 5$ $2x_1 - x_2 + x_3 \le 6$ $x_1 + x_2 + 3x_3 \le 10$ $4x_1 + x_3 \le 12$	05
Q.2	a) Evaluate $\int_C \frac{\cot z}{z} dz$ where C is the ellipse $9x^2 + 4y^2 = 1$	06
	b) Show that $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ is non-derogatory.	06
	c) If X is a normal variate with mean 10 and standard deviation 4, find i) $P(X-14 <1)$, ii) $P(5 \le X \le 18)$, iii) $P(X \le 12)$	08

06

Q.P. Code:23022

- Q.3 a) Find the expectation of number of failures preceding the first success in an infinite series 06 of independent trials with constant probabilities p & q of success and failure respectively.
 - b) Using Simplex Method solve the following L.P.P Maximise $Z = 10x_1 + x_2 + x_3$ Subject to $x_1 + x_2 - 3x_3 \le 10$ $4x_1 + x_2 + x_3 \le 20$ $x_1, x_2, x_3 \ge 0$
 - c) Expand $f(z) = \frac{1}{z(z+1)(z-2)}$
 - (i) Within the unit circle about the origin.
 (ii) with in the annulus region between the concentric circles about the origin having
 - radii 1 and 2 respectively.

 (iii) In the exterior of the circle with centre at the origin and radius 2.
- Q.4 a) If X is Binomial distributed with mean 2 and variance = 4/3, find the probability 06 distribution of X.
 - b) Calculate the value of rank correlation coefficient from the following data regarding score 06 of 6 students in physics & chemistry test.

 Marks in Physics : 40, 42, 45, 35, 36, 39
 - Marks in Physics : 40, 42, 45, 35, 36, 39 Marks in Chemistry : 46, 43, 44, 39, 40, 43
 - c) Is the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ diagonalisable? If so find the diagonal form and the transforming matrix.
- Q.5 a) A random sample of 50 items gives the mean 6.2 and standard deviation 10.24. Can it be 06 regarded as drawn from a normal population with mean 5.4 at 5% level of significance?
 - b) Evaluate $\int_0^\infty \frac{dx}{(x^2+a^2)^3}$, a>0 Using Cauchy's residue theorem.
 - c) Using Kuhn-Tucker condition to solve the following N.L.P.P

 Maximise $Z = 8x_1 + 10x_2 x_1^2 x_2^2$ Subject to $3x_1 + 2x_2 \le 6$ $x_1, x_2 \ge 0$

08

Q.P. Code:23022

Q.6 a) The following table gives the number of accidents in a city during a week. Find whether 06 the accidents are uniformly distributed over a week.

> Sun, Mon, Tue, Thu, Fri, Sat, No. of accidents: 15 11 12 10 14

b) If two independent random samples of sizes 15 & 8 have respectively the following 06 means and population standard deviations,

$$\overline{X_1} = 980$$
 $\overline{X_2} = 1012$ $\sigma_1 = 75$ $\sigma_2 = 80$ Test the hypothesis that $\mu_1 = \mu_2$ at 5% level of significance,

(Assume the population to be normal)

c) Using Penally (Big M) method solve the following L.P.P.

Minimise $Z = 2x_1 + x_2$ Subject to $3x_1+x_2=3$ $4x_1 + 3x_2 \ge 6$ $x_1 \pm 2x_2 \le 3$ $x_1, x_2 \ge 0$

IR@AIKTC-KRRC

aiktcdspace.org

SE-Sem-IV-CBSQS-Computers-AOA

Q.P. Code:13172

28/11/15

Max Marks:

80

Time Duration: 3 Hrs

Note: Question number 1 is Compulsory.

Solve any Three questions from Remaining.

Q1. Answer Following Questions (Any Four)

20M

- a) What is backtracking Approach. Explain how it is used in graph coloring.
- b) Explain Randomized algorithm with example.
- c) What is Knuth Morris Pratt Method of Pattern Matching? Give Examples.
- d) Explain in brief the concept of Multistage Graphs?
- e) Merge sort and its complixity.
- Q2. A) Derive and comment on the complexity of Quick Sort algorithm.

10M

b) Solve Following Knapsack problem using dynamic approach.

10M

N=4 items, capacity of knapsack M=9

ltem i	Value vi	Weight wi	The state of the s
1	18	2	
2	25	4	NAME OF THE PARTY
3	27		MAN AND MAN
4	* 10	3	

Q3. A) What is sum of Subset problem? Write the Algorithm and solve following.

10M

array
$$A = [2,3,5,6,7,8,9]$$
 and $K = 15$

- b) Write the algorithm for finding strassens matrix multiplication and show how the complexity is being affected?.
- Q4. A) What is Longest Commom subsequence Problem? Find LCS for following.

10M

String x = ACBAED

String y = ABCABE

b) Explain binary search Tree? How to generate an optimal binary search tree.

10M

Q.P. Code:13172

Q5. A) What is all pairs shortest path algorithm? Apply the same on following Graph.

10M

b) Find MST of Following Graph using Prims and Prism's Algorithm.

10M

20M

- a) Optimal Storage on Tapes
- b) 15 puzzle problem.
- c) Binary Search and its complexity.
- d) Problem of Multiplying Long Integers.

aiktcdspace-org_12-17
SE-COMPUTER-Som-IV-CBSGS

COA

Q.P. Code:13083

	[Time: Three Hours] [Marks:	80]
	Please check whether you have got the right question paper. N.B: 1. Question no 1 is compulsory. 2. Attempt any three questions from remaining five questions. 3. Assume suitable data if required 4. Draw neat diagram wherever necessary.	
Q.1	Solve any four	20
	A. List different memory organization characteristics.	
	B. What is IO buffering?	
3	C. In floating point representation how to identify sign of exponent?	
	D. What is virtual memory?	
	E. What is TLB?	
Q.2	A. I) Draw the flow chart for Booth's Algorithm for two's complement multiplication.	4
	II) Using Booth's algorithm Multiply 14 times -5.	6
	B. Describe hard-wire control unit and specify its advantages.	10
Q.3	A. Compare interrupt driven I/O and DMA	10
	B. Calculate the hit and miss using various page replacement policies LRU, OPT, FIFO for following sequence (page frame size 3) 4,7,3,0,1,7,3,8,5,4,5,3,4,7,534 state which one is best for above example?	10
Q.4	A. Explain set associative and associative cache mapping techniques	10
	B. Explain Flynn's classification	10
Q.5	A. Explain six stage instruction pipeline with suitable diagram.	10
	B. Differentiate between I. RISC and CISC II. SRAM and DRAM	10
Q.6	A. Explain different pipe lining hazards	10
	B. Explain in brief cache coherency problem	10

IR@AIKTC-KRRC SE-sem-IV CBSQS-Computers - DBMS

12/12/17

Q. P. Code: 18508

(3 Hours)

Total Marks: 80

N.	В.:	 (1) Question No.1 is compulsory. (2) Solve any three questions out of the remaining questions. (3) Make suitable assumptions if needed. 	
		 (a) Describe Data Independence. (b) Compare File System and Database System. (c) Explain ACID properties. (d) Explain Aggregate Functions in SQL 	5 5 5 5
3	2.	(a) Define Normalization. Discuss different Normalization Techniques with example.(b) Describe the overall architecture of DBMS with suitable diagram.	10 10
	3.	(a) Explain types of integrity constraints with example.(b) Draw an ER Diagram and convert it into relational model for a Company, which	10 10
		has several Employees working on different types of Projects. Several Employees	
		are working for one Department, every Department has a Manager.	
	¥	Several Employees are supervised by one Employee.	
2	4. ((a) Discuss Data Definition and Manipulation Commands in SQL.	10
		(b) Explain Security and Authorization in DBMS.	10
			272
5	. (a) Explain the following Relational Algebra Operations with example:	10
		i. Cartesian Product iii. Project ii. Natural Join iv. Union	
	((b) Explain Log based recovery and shadow paging in detail.	10
(Write Short notes on:	20
		(a) Steps in Query Processing (b) Role of Database Administrator	
		(c) Deadlocks	
	400	(d) Specialization and Aggregation	

(V)

IR@AIKTC-KRRC computer - CBSGS - Taiktcdspace.org 18/12/1

Q.P. Code: 23707

(3 Hours)

[Total Marks: 80]

N.I	3.	(2) Attempt a	No. 1 is compulsory any three out of remaining five questions ons made should be clearly stated	
1.	(b)) Differentiate Explain Recu	msky Hierarchy between DFA and NFA ursive and Recursively enumerable languages lar Expression. Design R.E. for strings ending in consecutive 1's	5 5 5 5
2.		is divisible 5. Give and Exprove that fo	te State Machine to determine whether ternary number(base 3) plain formal definition of Pumping Lemma for Regular Language and sllowing language is not regular. $a^n b^n \mid n \ge 1$	10
3.	(a)	Design a PD	A that checks for well -formed parenthesis.	10
4.	(a)	$S \rightarrow i$ $C \rightarrow b$ For the strin (i) (ii) (iii) (iv) Design a Tur	following grammar C t S i C t S e S a g 'ibtibtaea' find the following: Leftmost derivation Rightmost derivation Parse tree Check if above grammar is ambiguous: ring Machine that recognizes palindrome string where $\Sigma = \{a,b\}$. wing grammar to GNF. S \rightarrow AB A \rightarrow BSB BB b B \rightarrow a	10 10
		(i)	S→01S 01	
		(1)	$S \rightarrow 10S 10$	
			S→00 ε	
				2.2
5.		37.	$(10)^*(\varepsilon+1)$ into NFA with ε -moves and obtain DFA.	10
			A to accept language $\{a^{n-1}b^{2n+1} n>=1\}$	10 20
).			on following (any 4)	20
		387 387	erties of Context Free Language of Regular expression and Finite automata	
		Rice's Theor	Control of the Contro	
			lealy Machine	
			on between DPDA and NPDA	
	(0)	, Dinolonnali	OH OCCUPENT DE DE ANTONE DE	

1

QP CODE: 24607

Duration: 3 Hours

Total Marks assigned: 80

N.) Question No. 1 is compulsory.	
		Attempt any three of remaining five questions.	
	(.3	Assume any suitable data if necessary and justify the same.	
1.	(a)	What is antialiasing? Explain any one method of antialiasing.	[05]
	(b)	Define shearing and give example.	[05]
	(c)	Derive the transformation matrix for fixed point scaling.	[05]
	(d)	Explain inside outside test used in filling algorithm.	[05]
2.	(a)	Explain the midpoint circle generation algorithm.	[10]
	(b)	Discuss all the steps used in reflection of an object about an arbitrary line with an example.	[10]
3.	(a)	Explain the Cohen-Sutherland line clipping algorithm with suitable example.	[10]
	(b)	Explain any one polygon clipping algorithm.	[10]
4.	(a)	Define window, viewport and derive window to viewport transformation.	[10]
	(b)	Discuss parallel and perspective projections.	[10]
5.	(a)	Discuss Bezier curve with its properties.	[10]
	(b)	Explain Gouraud and Phong shading along with their advantages and disadvantages	[10]
6.		Write a short note on any two of the following	[20]
	(a)	3-D representation methods.	
	(b)	Area Subdivision method	
	(c)	Fractals.	