ANJUMAN-I-ISLAM'S KALSEKAR TECHNICAL CAMPUS, NEW PANVEL Approved by: All India Council for Technical Education, Council of Architecture, Pharmacy Council of India New Delhi, Recognised by: Directorate of Technical Education, Govt. of Matherashira, Affiliated to: University of Mumbul. DEPARTMENT OF ELECTRICAL ENGINEERING | | REV:00 | DEPARTMENT OF ELECTRICAL ENGINEERING | EXM-04 | 1(a) | |-----|---------------------|---|---------|------| | CL | ASS:- SE | SEM:- IV | | | | SU | BJECT:- Pov | wer System-1 DATE: 27/10 | 02/2018 | | | DU | RATION:- 1 | Hr MARKS:- 2 | 20 | | | | 1 A | CLASS TEST 01 | | | | Q.0 | 1 Attempt a | nny TWO: (5 Marks each) | Marks | CO | | 1 | What are ac system. | dvantages and disadvantages of DC transmission system over AC transmission | 5 | 1 | | 2 | Define sag. | And draw single line diagram of AC power system | 5 | 2 | | 3 | | sulators used with overhead line? What are the advantages of pin type and type insulator? | 5 | 1 | | Q.0 | 1 Attempt a | ny ONE: (10 Marks) | | Z., | | 1 | Derive an a | pproximate expression for sag in overhead line with towers at different levels. | 10 | 2 | | 2 | Define and | explain string efficiency. What are different methods to improve it? | 10 | 2 | In novative Teaching - Exuberant Learning Vision: To be the most sought after academic, research and practice based department of Electrical Engineering that others would wish to emulate. ## KALSEKAR TECHNICAL CAMPUS, NEW PANVEL Approved by : All India Council for Technical Education, Council of Architecture, Pharmacy Council of India New Delhi, Recognised by : Directorate of Technical Education, Govt. of Maharashtra, Affiliated to : University of Mumbai. SCHOOL OF ENGINEERING & TECHNOLOGY SCHOOL OF PHARMACY ### DEPARTMENT OF ELECTRICAL ENGINEERING | REV:00 | DEPARTMENT OF ELECTRICAL ENGINEERING | | EXM-04(a) | a) | |--|--|----------|-----------|-----| | CLASS:- SE | | SEM:- IV | | | | SUBJECT:- AM IV | | 1 | 27/02/18 | | | DURATION:- 1hr | | S | | | | | CLASS TEST 01 | | | | | Q.01 Attempt any | Q.01 Attempt any TWO: (10 Marks) | 13.6% | Marks | CO | | 1 3 1 | -1] | | | 3 | | If $A = 2$ 2 | -1 , find the characteristic roots and characteristic vectors of A^2 | | , | 1 | | 2 2 | | | | | | Verify Cayle: | Verify Cayley-Hamilton Theorem for $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and hence find A^{-1} and $A^3 = 5A^2$ | | Orl | CO2 | | 3 If $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$, find A^{100} | -4], find A ¹⁰⁰ | | 5 1 | CO2 | | Q.02 Attempt any | Q.02 Attempt any TWO: (10 Marks) | | ΔΙ | | | 1 Find the extre | Find the extremal of $\int_{x_1}^{x_2} y \sqrt{1 + y'^2} dx$ | 111 | S
MB | CO1 | | 2 Find the curv | Find the curve $y = f(x)$ for which $\int_{x_1}^{x_2} y \sqrt{1 + y'^2} dx$ is minimum subject to the constraint | | 5 | COI | | $\int_{x_1}^{x_2} \sqrt{1 + y'^2} dx = \ell$ | $dx = \ell$ | | V1 1 | | | 3 Using Rayleig | Using Rayleigh-Ritz method, find an approximate solution for the extremals of | | 54 | COI | | $\int_0^1 (y'^2 - 2y)$ | $\int_0^1 (y'^2 - 2y - 2xy) dx \text{ with } y(0) = 2, y(1) = 1$ | 1 | | | Vision : To be the most sought after academic, research and practice based department of Electrical Engineering nnovative Teaching Lexuberant Learning ## KALSEKAR TECHNICAL CAMPUS, NEW PANVEL Approved by : All India Council for Technical Education, Council of Architecture, Pharmacy Council of India New Delhi, Recognised by : Directorate of Technical Education, Govt. of Maharashtra, Affibraed to : University of Mumbai. SCHOOL OF ARCHITECTURE SCHOOL OF PHARMACY SCHOOL OF ENGINEERING & TECHNOLOGY | | WUMBAI - IND | DEPARTMENT OF FIECTRICAL ENGINEERING | | | |-----|--|--|-----------|------------| | | REV:00 | DEPARTMENT OF ELECTRICAL ENGINEERING | | EXM-04(a) | | CL | CLASS:- SE | | SEM: IV | | | SU | SUBJECT:- EFW | | DATE: OS | 0 0 0 0 | | DU | DURATION:- 1hr | | MARKS: 20 | 0110 | | | | CLASS TEST 01 | Trickey. | | | Q.0 | Q.01 Attempt any TWO: (10 Marks) | | | - | | A | Express the vect | Express the vector A in cartesian coordinate system if A= 2cos O ar + 71 aO - 4aO | - | TATALKS CO | | B | Transform vect | Transform vector field F into cylindrical coordinate system if F = 10 ax - 8av + 6az at | 697 at | 7 0 | | | point (10,-8,6) | | 0 41 | 0 | | 0 | State and expla | State and explain Divergence theorem. | | 5 CO2 | | 0.0 | Q.02 Attempt any TWO: (10 Marks) | WO: (10 Marks) | | N | | A | Three equal poi | A Three equal point charges of 2 μC are located in free space at (0.0.0.0), (2.0.0), & (0.2.0.0) | 120) | 5 (0) | | | respectively. Fi | respectively. Find net force on the fourth charge of 5 µC at (2,2,0) | | Ala | | В | Find the electric located at p1(1, | Find the electric field intensity at point P(1,1,1) caused by four identical point charges located at p1(1,1,0),p2(-1,1,0),p3(-1,-1,0) & p4(1,-1,0) | rges | 5 CO2 | | 0 | Calculate the di
If $\overline{D} = 4x^3y^3z^2$ | Calculate the divergence of field at the point indicated P(1,2,3)
If $\overline{D} = 4x^3y^3z^2a\overline{x} + 3x^4y^2z^2a\overline{y} + 2x^4y^3za\overline{z}$ | | NAV. 602 | | | | lec. It | | | # KALSEKAR TECHNICAL CAMPUS, NEW PANVEL Approved by : All India Council for Technical Education, Council of Architecture, Pharmacy Council of India New Delhi, Recognised by : Directorate of Technical Education, Govt. of Maharachtra, Affiliated to : University of Munibol. SCHOOL OF ARCHITECTURE SCHOOL OF ENGINEERING & TECHNOLOGY | | REV:00 | DEPARTMENT OF ELECTRICAL ENGINEERING | EXM-04(a) | 4(a) | |--------------|--|---|-------------------|--| | CL | CLASS:- SE | SE | SEM:- IV | | | SU | SUBJECT:- EMC-II | DA DA | DATE: - 28 /02/18 | | | DU | DURATION: - 1hr | MINISTRA | MARKS:- 20 | | | | а анаристипентник Миней Ангения (Алгения) (МУК) (С) (С) (С) (С) (С) (С) (С) (С) (С) (С | CLASS TEST 019 MARINACI * | | | | 0.0 | Q.01 Attempt any TWO: (08 Marks) | WO: (08 Marks) | Marks | CO | | Н | Derive EMF equation of transformer. | on of transformer. | 4 | CO1 | | 2 | Define voltage reg | Define voltage regulation and derive condition for zero and max voltage | 4 | CO1 | | | regulation. | CALLETTE | 10 | | | ω | Explain polarity test on transformer | st on transformer. | -14 | CO 1 | | Q.C | 2 Attempt any T | Q.02 Attempt any TWO: (12 Marks) | 1 | | | 1 | Explain separation | Explain separation of hystersis and eddy current losses. | 866 | CO1 | | 2 | Explain with neat | Explain with neat diagram sumpher test on two identical transformer. | NW
NW | CO1 | | ω | Two transformer s ref to sec are (1+j | Two transformer shares a load of 400kva at 0.8 pf lag. Their eq impedances ref to sec are $(1+j2.5)$ and $(1.5+j3)$ ohm respectively calculate load share by | | C01 | | | each transformer. | SEK
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NOISE
NO | NAU | | | boom a monda | | | | and commences and an analysis and an analysis of | ## KALSEKAR TECHNICAL CAMPUS, NEW PANVEL Approved by : All India Council for Technical Education, Council of Architecture, Pharmacy Council of India New Delhi, Reaganised by : Directorate of Technical Education, Govt. of Maharashtra, Affiliated to : University of Mumbai. □ SCHOOL OF ARCHITECTURE SCHOOL OF ENGINEERING & TECHNOLOGY SCHOOL OF PHARMACY SUBJECT:- ADIC DURATION:- 1hr Q.01 Attempt any TWO: (10 Marks) CLASS:- SE Q.02 Attempt any ONE: (10 Marks) REV:00 Explain Integrator using op-amp. Also explain Practical Integrator. Explain virtual short concept and virtual ground concept. Explain Instrumentation Amplifer with an application. Explain Slew rate and CMRR. Draw and Explain block diagram of Op-amp. DEPARTMENT OF ELECTRICAL ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING CLASS TEST 01 MARKS:- 20 DATE:- 0/10/18 SEM:- III EXM-04(a) 10 10 CO2 CO2 CO1 CO2 CO COI that others would wish to emulate. Vision : To be the most sought after academic, research and practice based department of Electrical Engineering Exuberant Learning SCHOOL OF ENGINEERING & TECHNOLOGY ### ANJUMAN-I-ISLAM'S ### KALSEKAR TECHNICAL CAMPUS, NEW PANVEL □ SCHOOL OF PHARMACY Approved by : All India Council for Technical Education, Council of Architecture, Pharmacy Council of India New Delhi, Recognised by : Directorate of Technical Education, Govt. of Maharashtra, Affiliated to : University of Mumbai. □ SCHOOL OF ARCHITECTURE DEPARTMENT OF ELECTRICAL ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING SEM:-IV CLASS:- SE DATE:-SUBJECT:-EN MARKS:- 20 DURATION:- 1 Hr CLASS TEST 01 Marks CO Q.01 Attempt any ONE: (10 Marks) Find I_A and I_B by using mesh analysis. 5Ω CO1 IOTB 5.12 10V Find voltage V_X by using nodal analysis CO1 Q.02 Attempt any ONE: (10 Marks) a Find the current I_X by using superposition theorem. 10 CO1 5.0 INAVIMU(*)30A IND 201 Find Thevenin's equivalent. 10 CO1 10 V Innovative Teaching - Exuberant Learning Vision: To be the most sought after academic, research and practice based department of Electrical Engineering that others would wish to emulate.