
Integrity	and	Security	in	Databases

Database Management System

AIKTC

Prof Muhammed Salman Shamsi

IR@AIKTC-KRRC aiktcdspace.org

Disclaimer
• All	the	materials	used	in	this	presentation	belongs	to	the	respective	
authors	mentioned	in	reference	section.

• This	presentation	is	to	only	help	the	students	community	of	Mumbai	
University	for	the	subject	of	Database	Management	System	and	is	for	
private	circulation	only.	

• I	neither	claim	this	material	or	use	it	for	commercial	purpose.

• This	presentation	is	purely	for	education	purpose.

IR@AIKTC-KRRC aiktcdspace.org

Integrity	Constraints

• Integrity	constraints	guard	against	accidental	damage	to	the	
database,	by	ensuring	that	authorized	changes	to	the	
database	do	not	result	in	a	loss	of	data	consistency.

• It	is	the	mechanism	to	prevent	invalid	data	entry	into	
the	table.

• Hence	integrity	constraints	are	limitations	or	set	of	rules	
imposed	on	data	of	database	in	order	to	keep	database	in	
consistent	or	correct	state	.

• Domain	Constraints	&	Referential	Integrity	Constraints	are	
the	types	of	Integrity	Constraints.		

IR@AIKTC-KRRC aiktcdspace.org

Domain	Constraints
• Domain	constraints	are	the	most	elementry	form	of	integrity	
constraints.

• They	test	the	values	inserted	in	the	database,	and	test	queries	to	
ensure	that	the	comparision	make	sense.

• New	domains	can	be	created	from	the	existing	data	types:
• create	domain	<new_domain_name>	as	<new_data_type>

create	domain Dollars	as	numeric(12,2)
create	domain Pounds	as	numeric(12,2)

• Note:	we	cannot	assign	or	compare	a	value	of	type	Dollars	to	a	
value	of	type	Pounds.	However	we	can	convert	type	as	below:

(cast r.A	as Pounds)

IR@AIKTC-KRRC aiktcdspace.org

Referential	Integrity
• Ensures	that	a	value	that	appears	in	one	relation	for	a	given	set	of	
attributes	also	appears	for	a	certain	set	of	attributes	in	another	
relation.

• Let	A	be	a	set	of	attributes.		Let	R	and	S	be	two	relations	that	
contain	attributes	A	and	where	A	is	the	primary	key	of	S.	A	is	said	
to	be	a		foreign	key of	R	if	for	any	values	of	A	appearing	in	R	these	
values	also	appear	in	S.	R	and	S	are	not	necessarily	distinct.

• If	a	foreign	key	F	in	a	table	R	refers	to	and	matches	the	primary	
key	P	of	table	S	then	every	value	of	F	must	either	be	equal	to	value	
of	P	or	wholly	NULL.

•

IR@AIKTC-KRRC aiktcdspace.org

Cascading	Actions	in	Referential	Integrity
• create	table	course	(

course_id char(5)	primary	key,
title													varchar(20),
dept_name varchar(20)	references	department

)
• create	table	course	(

…
dept_name varchar(20),
foreign	key	(dept_name)	 references	department

on	delete	cascade
on	update	cascade,

.	.	.	
)

• alternative	actions	to	cascade:		set	null,	set	default

IR@AIKTC-KRRC aiktcdspace.org

7

Column	Constraints	and	Table	Constraints

If	the	constraints	are	defined along with	the a	column	definition	of	
a	table,	than they are	called	column	constraints.	These	constraints	
involve	only	one	attribute.	
If	more	than	one	attribute	is	involved	the	table	constraint	must	be	
used.	A	column	constraint	will	not	be	checked	if	values	in	other	
columns	are	being	updated.
If	the	data	constraints	attached	to	a	specific	column	in	a	table	
references	the	contents	of	a	another	column	in	the	table	then	they	
are	called	as	table	constraints.	

IR@AIKTC-KRRC aiktcdspace.org

Examples	of	different	Constraints

• Not	Null	constraint
• Primary	Key	constraint
• Unique	Constraint
• Default	value	Constraint
• Foreign	Key	Constraint
• Check	Integrity	Constraints

IR@AIKTC-KRRC aiktcdspace.org

PK	as	a	Column	Constraint
A column constraint is usually used when the PK is a single
attribute.

Constraint: Data entered in the column must be unique and not
null.

CREATE TABLE Match
(MatchID INT PRIMARY KEY,
Team1 CHAR(15),
Team2 CHAR(15),
Ground CHAR(20),
Date CHAR(10),
Result CHAR(10));

IR@AIKTC-KRRC aiktcdspace.org

PK	as	a	Table	Constraint

A	table	constraint	is	usually	used	when	the	PK	is	more	than	a	
single	attribute.	

CREATE	TABLE	Bowling
(MID INT,	
PID INT,
NOvers INT,	
Maidens INT,	
NRuns INT,	
NWickets INT,	
PRIMARY	KEY	(MID,	PID));

IR@AIKTC-KRRC aiktcdspace.org

FK	as	a	Column	Constraint

A	column	constraint	is	usually	used	when	the	FK	is	a	single	
attribute.

CREATE	TABLE	Employee
(EmpID NUMERIC(6)	PRIMARY	KEY,
Name CHAR(20),
Dept CHAR(10),	REFERENCES	Department (DeptID),
Address CHAR	(50)
Position CHAR	(20));

IR@AIKTC-KRRC aiktcdspace.org

FK	as	a	Table	Constraint
A	table	constraint	is	usually	required	when	the	FK	is	more	than	a	
single	attribute.	

CREATE	TABLE	Bowling
(MatchID INT,	
PID INTEGER,
NOvers INT,	
Maidens INT,	
NRuns INT,	
NWickets INT,	
PRIMARY	KEY	(MID,	PID)
FOREIGN	KEY	(MatchID)	REFERENCES	Match,
FOREIGN	KEY	(PID)	REFERENCES	Player);

IR@AIKTC-KRRC aiktcdspace.org

NULL	as	a	Column	Constraint

CREATE TABLE Match
(MatchID INT PRIMARY KEY,
Team1 CHAR(15) NOT NULL,
Team2 CHAR(15) NOT NULL,
Ground CHAR(20),
Date CHAR(10),
Result CHAR(10));

IR@AIKTC-KRRC aiktcdspace.org

DEFAULT	as	a	Column	Constraint

CREATE	TABLE	Match
(MatchID INT	PRIMARY	KEY	
Team1 CHAR(15)	DEFAULT	‘India’,	
Team2 CHAR(15),	
Ground CHAR(20),	
Date CHAR(10),	
Result CHAR(10));

IR@AIKTC-KRRC aiktcdspace.org

UNIQUE	as	a	Column	Constraint

A	column	constraint	is	usually	used	when	UNIQUE	is	a	single	
attribute.	

CREATE	TABLE	Employee
(EmpID NUMBER(6)	PRIMARY	KEY,
Name CHAR(20),
DeptID CHAR(10),	
Telephone INT	UNIQUE,
Address CHAR	(50),
Position CHAR	(20);

IR@AIKTC-KRRC aiktcdspace.org

UNIQUE	as	a	Table	Constraint

A	table	constraint	is	usually	required	when	UNIQUE	is	more	
than	a	single	attribute.	

CREATE	TABLE	Player
(PlayerID INT	PRIMARY	KEY,	
LName CHAR(15),	
FName CHAR(15),	
Country CHAR(20),	
YBorn INT,	
BPlace CHAR(20)
FTest INT,
UNIQUE	(LName,	FName));

IR@AIKTC-KRRC aiktcdspace.org

CHECK	Constraint

 Possible conditions in the CHECK clause

1 attribute A > value v

2 attribute A between value v1 and value v2

3 attribute A IN (list of values)

4 Attribute A IN subquery

5 attribute A condition C1 OR condition C2

6 attribute A condition C1 AND condition C2

IR@AIKTC-KRRC aiktcdspace.org

CHECK	as	a	Column	Constraint

CREATE	TABLE	Player
(PlayerID INT	PRIMARY	KEY,	
LName CHAR(15),	
FName CHAR(15),	
Country CHAR(20),	
YBorn INT	CHECK	(YBorn >	1950),	
BPlace CHAR(20),
FTest INT);

IR@AIKTC-KRRC aiktcdspace.org

CHECK	as	a	Table	Constraint
A	table	constraint	is	used	when	the	CHECK	constraint	has	
more	than	a	single	attribute.	

CREATE	TABLE	Player
(PlayerID INT	PRIMARY	KEY,	
LName CHAR(15)	NOT	NULL,
FName CHAR(1)	NOT	NULL,	
Country CHAR(20),	
YBorn INT,	
BPlace CHAR(20),
FTest INT,
CHECK	(FTest >	YBorn +	15));

IR@AIKTC-KRRC aiktcdspace.org

Alternative	ways	to	create	constraints

• Syntax:	
constraint	[<constraint_name>]	constraint_definition;

• In	create	command
create	table	Student(sid	varchar(20),	mobileno	varchar(10),
....................................,
constraint	stud_pk	primary	key(sid),
constraint	m_unique	unique(mobileno));

• In	Alter	command
Alter	table	Student	ADD	CONSTRAINT	check_age	CHECK(age>16);

• Dropping	a	constraint
Alter	table	Student	DROP	CONSTRAINT	check_age;

IR@AIKTC-KRRC aiktcdspace.org

Complex	Check	Clauses
• Complex	check	conditions	can	be	useful	when	we	want	to	ensure	
integrity	of	data,	but	may	be	costly	to	test.	
check (timeslot_id	in (select timeslot_id	from timeslot))

• For	example,	the	predicate	in	the	check	clause	would	not	only	have	
to	be	evaluated	when	a	modification	is	made	to	the	section	
relation,	but	may	have	to	be	checked	if	a	modification	is	made	to	
the	time	slot	relation	because	that	relation	is	referenced	in	the	
subquery.

• Unfortunately:		subquery	in	check	clause	not	supported	by	pretty	
much	any	database

IR@AIKTC-KRRC aiktcdspace.org

Assertion
• An	assertion is	a	predicate	expressing	a	condition	that	we	wish	the	database	
always	to	satisfy.

• Domain	constraints and	referential-integrity	constraints are	special	forms	
of	assertions.

• create	assertion	<assertion-name>	check	<predicate>;
• Also	rarely supported	by	anyone

• Two	examples	of	such	constraints	are:
•	For	each	tuple	in	the	student	relation,	the	value	of	the	attribute	tot_cred	
must	equal	the	sum	of	credits	of	courses	that	the	student	has	completed	
successfully.
• An	instructor	cannot	teach	in	two	different	classrooms	in	a	semester	in	the	
same	time	slot.

IR@AIKTC-KRRC aiktcdspace.org

Assertion	Example

create	assertion credits_earned constraint	check
(not	exists	(select ID

from student
where tot_cred	<>	(select sum(credits)
from takes	natural join course
where student.ID=	takes.ID

and grade	is	not null	
and grade<>	’F’);

IR@AIKTC-KRRC aiktcdspace.org

Triggers
• A	trigger is	a	statement	that	is	executed	automatically	by	the	
system	as	a	side	effect	of	a	modification	to	the	database.

• To	design	a	trigger	mechanism,	we	must:
• Specify	the	conditions	under	which	the	trigger	is	to	be	
executed.

• Specify	the	actions	to	be	taken	when	the	trigger	executes.

• The	above	model	of	triggers	is	referred	to	as	the	event-condition-
action model	for	trigger.	

IR@AIKTC-KRRC aiktcdspace.org

Need	for	Triggers

• Triggers	can	be	used	to	implement	certain	integrity	constraints	
that	cannot	be	specified	using	the	constraint	mechanism	of	SQL.	

• Triggers	are	also	useful	mechanisms	for	alerting	humans	or	for	
starting	certain	tasks	automatically	when	certain	conditions	are	
met.

• As	an	illustration,	we	could	design	a	trigger	that,	whenever	a	
tuple	is	inserted	into	the	takes	relation,	updates	the	tuple	in	the	
student	relation	for	the	student	taking	the	course	by	adding	the	
number	of	credits	for	the	course	to	the	student’s	total	credits.

IR@AIKTC-KRRC aiktcdspace.org

Trigger	Syntax		[MySQL]

CREATE
[DEFINER =	{	user	|	CURRENT_USER }]
TRIGGER trigger_name
trigger_time	trigger_event
ON tbl_name	FOR	EACH	ROW
trigger_body

trigger_time:	{	BEFORE |	AFTER }
trigger_event:	{	INSERT |	UPDATE |	DELETE }

IR@AIKTC-KRRC aiktcdspace.org

Triggering	Events	and	Actions	in	SQL
Triggering	event	can	be	insert,	delete or	update
Triggers	on	update	can	be	restricted	to	specific	attributes
For example, after update of takes on grade
Values	of	attributes	before	and	after	an	update	can	be	referenced
referencing old row as : for deletes and updates
referencing new row as : for inserts and updates
Triggers	can	be	activated	before	an	event,	which	can	serve	as	extra	
constraints.		For	example,		convert	blank	grades	to	null.

IR@AIKTC-KRRC aiktcdspace.org

Trigger	Example	IBM	DB2

create	trigger setnull	before	update	on takes
referencing	new	row	as nrow
for	each	row
when (nrow.grade	=	’	’)
begin	atomic

set nrow.grade	=	null;
end;

IR@AIKTC-KRRC aiktcdspace.org

Trigger	Example	MySQL

create	trigger setnull	before	update	on	takes	
for	each	row	
begin	

if	new.grade	=''	then	
set	new.grade	=	null;	

end	if;	
end;

IR@AIKTC-KRRC aiktcdspace.org

create	trigger credits_earned	after	update	of takes	on (grade)
referencing	new	row	as nrow
referencing	old	row	as orow
for	each	row
when nrow.grade	<>	’F’	and nrow.grade	is	not	null
and (orow.grade	=	’F’	or orow.grade	is	null)
begin	atomic
update student	set tot_cred=	tot_cred+
(select credits	from course	where course.course_id=			

nrow.course_id)
where student.id	=	nrow.id;

end;

IR@AIKTC-KRRC aiktcdspace.org

Triggers	for	maintaining	referential	integrity

create	trigger timeslot_check1	after	insert	on section
referencing	new	row	as nrow
for	each	row
when (nrow.time_slot_id	not	in (

select time_slot_id
from time_slot))	/*	time	slot	id	not	

present	in	time	slot	*/
begin

rollback
end;

IR@AIKTC-KRRC aiktcdspace.org

When	Not	to	Use	Triggers
• No	need	to implement	the	on	delete	cascade	feature	of	a	foreign-key	

constraint	by	using	a	trigger,	instead	of	use the	cascade	feature.	
• There	is	no	need	to	write	trigger	code	for	maintaining	materialized	views.
• Modern	database	systems,	provide	built-in	facilities	for	database	

replication,	making	triggers	unnecessary	for	replication	in	most	cases.
• Triggers	should	be	written	with	great	care,	since	a	trigger	error	detected	at	

runtime	causes	the	failure	of	the	action	statement	that	set	off	the	trigger.	
Furthermore,	the	action	of	one	trigger	can	set	off	another	trigger.	In	the	
worst	case,	this	could	even	lead	to	an	infinite	chain	of	triggering.

• Many	trigger	applications	can	be	substituted	by	appropriate	use	of	stored	
procedures

IR@AIKTC-KRRC aiktcdspace.org

Security

• Security	is	a	protection	from	malicious	attempts	to	steal	or	
modify	data.	The	security	should	be	provided	at	following	
levels:

• 1)	Database	system	level.	(user	acess	only	required	data)
• 2)	Operating	system	level.	(super	user)
• 3)	Network	level.	

(encryption,eavesdropping,masquerading)
• 4)	Physical	level.	
• 5)	Human	level.	(user	training)

IR@AIKTC-KRRC aiktcdspace.org

Authorization

Forms	of	authorization	on	parts	of		the	database:

Read - allows	reading,	but	not	modification	of	data.
Insert - allows	insertion	of	new	data,	but	not	modification	of	existing	data.
Update - allows	modification,	but	not	deletion	of	data.
Delete - allows	deletion	of	data.

Forms	of	authorization	to	modify	the	database	schema

Index - allows	creation	and	deletion	of	indices.
Resources - allows	creation	of	new	relations.
Alteration - allows	addition	or	deletion	of	attributes	in	a	relation.
Drop - allows	deletion	of	relations.

IR@AIKTC-KRRC aiktcdspace.org

Authorization	Specification	in	SQL

The	grant statement	is	used	to	confer	
authorization

grant <privilege	list>	on	<relation	name	or	
view	name>	to <user	list>
<user list> is:
a user-id
public, which allows all valid users the privilege granted
A role (more on this later)

Granting	a	privilege	on	a	view	does	not	imply	
granting	any	privileges	on	the	underlying	relations.
The	grantor	of	the	privilege	must	already	hold	the	

IR@AIKTC-KRRC aiktcdspace.org

Privileges	in	SQL
select: allows	read	access	to	relation,or	the	ability	to	query	using	the	view

Example: grant users U1, U2, and U3 select authorization on the
instructor relation:

grant	select	on	instructor	to	U1,	U2,	U3

insert:	the	ability	to	insert	tuples
update:	the	ability		to	update	using	the	SQL	update	statement
delete:	the	ability	to	delete	tuples.
all privileges:	used	as	a	short	form	for	all	the	allowable	privileges

IR@AIKTC-KRRC aiktcdspace.org

Revoking	Authorization	in	SQL
The	revoke statement	is	used	to	revoke	authorization.

revoke <privilege list>
on <relation name or view name> from <user list>

Example:

revoke select on branch from U1, U2, U3
<privilege-list>	may	be	all	to	revoke	all	privileges	the	revokee	may	hold.
If	<revokee-list>	includes	public,	all	users	lose	the	privilege	except	those	granted	
it	explicitly.
If	the	same	privilege	was	granted	twice	to	the	same	user	by	different	grantees,	
the	user	may	retain	the	privilege	after	the	revocation.
All	privileges	that	depend	on	the	privilege	being	revoked	are	also	revoked.

IR@AIKTC-KRRC aiktcdspace.org

Roles
• create	role instructor;
• grant instructor to	Amit;
• Privileges	can	be	granted	to	roles:

• grant select on takes to instructor;
• Roles	can	be	granted	to	users,	as	well	as	to	other	roles

• create role teaching_assistant
• grant teaching_assistant to instructor;

• Instructor inherits	all	privileges	of	teaching_assistant
• Chain	of	roles

• create role dean;
• grant instructor to dean;
• grant dean to Satoshi;

IR@AIKTC-KRRC aiktcdspace.org

Limitations	of	SQL	Authorization
• SQL	does	not	support	authorization	at	a	tuple	level.
• All	end	users	of	an	application	may	be	mapped	to	a	single	
database	user.

• The	task	of	authorization	in	above	cases	falls	on	the	application	
program,	with	no	support	from	SQL:

Benefits:	Fine	grained	authorizations	implemented	by	
applications

Drawback:	Authorization	loopholes	are	created	which	
becomes	difficult	to	find	due	to	large	amount	

of	application	code

IR@AIKTC-KRRC aiktcdspace.org

References

• Database	Management	System,	G.K	Gupta,	Tata	McGraw	Hill
• Database	System	Concepts,	Korth,	Sudarshan et.	al.,	Tata	McGraw	Hill	

IR@AIKTC-KRRC aiktcdspace.org

