A Dissertation

aiktcdspace.org

A

Dissertation

Report On

IDE WIND TURBINE

TURBINE

aiktcdspace.org

A

Dissertation

Report On
 HIGH ALTITUDE WIND TURBINE

by mitted in partial fulfillment of the requirements for the

degree BACHELOR OF ENGINEERING By A

Submitted in partial fulfillment of the requirements for the

degree BACHELOR OF ENGINEERING By aiktcdspace.org

A

Dissertation

Report On
 IIGH ALTITUDE WIND TURBINE

nitted in partial fulfillment of the requirements for the

degree BACHELOR OF ENGINEERING By

KHAN MOHD SARFARAZ

A

Dissertation

Report On

L**TITUDE WIND TURBINE**

Trial fulfillment of the requirements for the

CHELOR OF ENGINEERING By

KHAN MOHD SARFARAZ

MANSURI MOHD MADNI

KHAN QAIS

HAJI ALTAMAS Dissertation
 MANUARE MADISTER CONTINUE

Final fulfillment of the requirements for the
 CHELOR OF ENGINEERING By
 KHAN MOHD SARFARAZ

MANSURI MOHD MADNI

KHAN QAIS

HAJI ALTAMAS Report On

L**TITUDE WIND TURBINE**

Trial fulfillment of the requirements for the
 CHELOR OF ENGINEERING By
 KHAN MOHD SARFARAZ

MANSURI MOHD MADNI

KHAN QAIS

HAJI ALTAMAS

Under the guidance of L**TITUDE WIND TURBINE**

rtial fulfillment of the requirements for the
 CHELOR OF ENGINEERING By
 KHAN MOHD SARFARAZ

MANSURI MOHD MADNI

KHAN QAIS

HAJI ALTAMAS

Under the guidance of

MR. IFTEKAR PATEL **FITUDE WIND TURBINE**
al fulfillment of the requirements for the
HELOR OF ENGINEERING By
HAN MOHD SARFARAZ
ANSURI MOHD MADNI
HAN QAIS
MJ ALTAMAS
Under the guidance of
R. IFTEKAR PATEL THE CHELOR OF ENGINEERING By
 MARK AND MOHD SARFARAZ

MANSURI MOHD MADNI

MANSURI MOHD MADNI

MAJI ALTAMAS

Under the guidance of

MR. IFTEKAR PATEL

aiktcdspace

A Dissertation

Report On

TUDE WIND TURBINE

aiktcdspace.org

Dissertation

Report On

UDE WIND TURBINE

 M_{M} MUMBAL - INDIA

Prof. Mr S. KALEEM
(H.O.D) (DIRECTOR) NAME

NAME

NAME

NAME

NAME

NAME

NAME

REARAZ

NAME

NAME

REARAZ

NAME

NAME

REARAZ
 16 DEE60

NAME

NAME

REARAZ
 16 DEE60

NAME

NAME
 Submitted to:

MR. IFTEKAR PATEL

Submitted by:

NAME ROLL NO

NAME ROLL NO

SARFARAZ 16DEE60

ANSURI MOHD 16DEE64 SARFARAZ 16DEE60 MR. IFTEKAR PATEL

Submitted by:

NAME

NAME

ROLL NO

KHAN MOHD

SARFARAZ

MANSURI MOHD

MADNI 16DEE64

KHAN QAIS

16DEE64

KHAN QAIS

16DEE64

16DEE64

16DEE64 MADNI 16DEE64 Submitted to:

MR. IFTEKAR PATEL

Submitted by:

NAME

ROLL NO

CHAN MOHD

SARFARAZ

ISDEE60

NADNI 16DEE64

KHAN QAIS

AJI ALTAMAS

ISDEE61

AJI ALTAMAS

ISDEE61 Submitted by:

NAME

NAME

KHAN MOHD

SARFARAZ

MANSURI MOHD

MADNI 16DEE64

KHAN QAIS

HAJI ALTAMAS 16DEE57

HAJI ALTAMAS 16DEE57 HAJI ALTAMAS
 ALTAMAS

1
 ALTAMAS

1
 ALTAMAS

1
 ALTAMAS

1
 ALTAMAS

1
 ALTAMAS

1
 ALTAMALEAI – **N**

Prof.Mr S. KALEEM

(H.O.D)

(H.O.D)

(GUIDE)

(H.O.D)

Dr. A.R. HONNUTAGI
(DIRECTOR) (DIRECTOR)

ACKNOWLEDGEMENT

REART

The satisfaction and euphoria that accompany the successful completion of any

task would be incomplete without the mention of the people who made it possible,

whose constant guidance and encouragement crowned our aiktedspace.org
 ACKNOWLEDGEMENT

The satisfaction and euphoria that accompany the successful completion of any

task would be incomplete without the mention of the people who made it possible,

whose constant guidance a aiktedspace.org
aiktedspace.org
aiktedspace.org
aiktedspace.org
aiktedspace.org
aiktedspace.org
aiktedspace.org
aiktedspace.org
aiktedspace in a quiporial that accompany the successful completion of any
aiks whose constant aiktedspace.org
 ACKNOWLEDGEMENT

The satisfaction and euphoria that accompany the successful completion of any

task would be incomplete without the mention of the people who made it possible,

whose constant guidance a **ACKNOWLEDGEMENT**
The satisfaction and euphoria that accompany the successful completion of any
task would be incomplete without the mention of the people who made it possible,
whose constant guidance and encouragement cro **ACKNOWLEDGEMENT**
The satisfaction and euphoria that accompany the successful completion of any
task would be incomplete without the mention of the people who made it possible,
whose constant guidance and encouragement cro The satisfaction and euphoria that accompany the successful completion of any
task would be incomplete without the mention of the people who made it possible,
whose constant guidance and encouragement crowned our efforts w The satisfaction and euphoria that accompany the successful completion of any
task would be incomplete without the mention of the people who made it possible,
whose constant guidance and encouragement crowned our efforts w The standard manufold the mention of the people who made it possible, whose constant guidance and encouragement crowned our efforts with success.
We consider it a privilege to express our sincere gratitude towards our guid

advice and encouragement crowned are increased to express our sincere gratitude towards our guide, Prof.

IFTEKARPATEL for the help, guidance and encouragement, he

provided during this project successfully and his suggest whose constant guidance and cheodiagement crowned out of
We consider it a privilege to express our sincere gratitude to
IFTEKAR PATEL for the help, guidance and e
provided during this project successfully and his suggestio provided during this project successfully and his suggestions.

We extend our thanks to Head of the Department Prof SYED KALEEM who have

encouraged us throughout the course. We all are indebted to the entire team of the
 We extend our thanks to Head of the Department Prof SYED KALEEM who have
encouraged us throughout the course. We all are indebted to the entire team of the
Department of Electrical Engineering. They supported us with scien We extend our thanks to Head of the Department Prof SYED KALEEM who have
encouraged us throughout the course. We all are indebted to the entire team of the
Department of Electrical Engineering. They supported us with scien We extend our manks to ricad of the Department Fror 3 FED KALEENY who have
encouraged us throughout the course. We all are indebted to the entire team of the
Department of Electrical Engineering. They supported us with sci

CERTIFICATE

interior anti-

This is to certify that the report entitled "HIGH ALTITUDE WIND

TURBINE" submitted by KHAN MOHD SARFARAZ, MANSURI MOHD

MADNI, KHAN QAIS, HAJI ALTAMAS in partial fulfillment of the

manipurent for the numb aiktedspace.org
 CERTIFICATE

This is to certify that the report entitled "HIGH ALTITUDE WIND

TURBINE" submitted by KHAN MOHD SARFARAZ, MANSURI MOHD

MADNI, KHAN QAIS, HAJI ALTAMAS in partial fulfillment of the

require REART CATE

MADNI, KHAN QAIS, HAJI ALTAMAS in partial fulfillment of the

MADNI, KHAN QAIS, HAJI ALTAMAS in partial fulfillment of the

requirement for the award of Bachelor of engineering in "ELECTRICAL

ENGINEERING" is a GRAIKTC

This is to certify that the report entitled "HIGH ALTITUDE WIND

TURBINE" submitted by KHAN MOHD SARFARAZ, MANSURI MOHD

MADNI, KHAN QAIS, HAJI ALTAMAS in partial fulfillment of the

requirement for the award of B **CERTIFICATE**

This is to certify that the report entitled "HIGH ALTITUDE WIND

TURBINE" submitted by KHAN MOHD SARFARAZ, MANSURI MOHD

MADNI, KHAN QAIS, HAJI ALTAMAS in partial fulfillment of the

requirement for the awar guidance.

Date:

DECLARATION

aiktedspace.org

I declare that this written submission represents my ideas in my own

and where others' ideas or words have been included, I have

ely cited and referenced the original sources. I also declare that I have WECLARATION

DECLARATION

I declare that this written submission represents my ideas in my own

words and where others' ideas or words have been included, I have

adequately cited and referenced the original sources. I als aiktedspace.org

aiktedspace.org
 DECLARATION

I declare that this written submission represents my ideas in my own

words and where others' ideas or words have been included, I have

adequately cited and referenced the **DECLARATION**
I declare that this written submission represents my ideas in my own
words and where others' ideas or words have been included, I have
adequately cited and referenced the original sources. I also declare that **DECLARATION**
I declare that this written submission represents my ideas in my own
words and where others' ideas or words have been included, I have
adequately cited and referenced the original sources. I also declare that **SUBMIST ION**
I declare that this written submission represents my ideas in my own
words and where others' ideas or words have been included, I have
adequately cited and referenced the original sources. I also declare that I declare that this written submission represents my ideas in my own
words and where others' ideas or words have been included, I have
adequately cited and referenced the original sources. I also declare that I have
adhere I declare that this written submission represents my ideas in my own
words and where others' ideas or words have been included, I have
adequately cited and referenced the original sources. I also declare that I have
adhere I declare that this written submission represents my ideas in my c
words and where others' ideas or words have been included, I h.
adequately cited and referenced the original sources. I also declare that I h
adhered to al

V

TABLE OF CONTENTS

The concept of High Altitude Wind Power (HAWP) is to supply a clean energy at low cost and high capacity factor than the Conventional Wind Power (CWP) system. This is one of the new technologies deployed for harvesting high altitude wind power using air-borne wind turbine-cum electric generator supported by light gas filled blimp/aerostat has been proposed in the project. An air-borne wind turbine at high altitude extracts kinetic energy from high speed streamlined wind using buoyancy provided by the blimp. Using a suitable power electronic converter (PEC), harvested electrical power is transmitted to the ground by using a tether. Blimp is tethered to the ground and provides mechanical strength to hold the blimp and the

IR@AIKTC and the control of the control of

same tether consisting of electrical conductors is used for transmitting the generated electrical power.

The project out lines major components used for harvesting high altitude wind power. Transmission of the electrical power at medium voltage DC reduces the transmission loss and volume of the conducting cable. The optimal transmission voltage level that gives minimum weight of the tether has been calculated for a given power level. The proposed HAWP system requires high power density PEC, which converts low voltage AC to medium voltage DC in an air borne unit and a ground based PEC that transforms medium voltage DC to distribution level grid voltage. Further, it also proposes the ground based grid-side PEC for distributed grid interface. In addition, comparative study between conventional wind energy harvesting system and high altitude wind energy harvesting system shows that high altitude wind power is better in terms of capacity factor, Cost of Electricity (COE), ease of construction, and power density than conventional wind power generatingsystem.

INTRODUCTION

R@AIKTC
 CHAPTER 1.
 INTRODUCTION
 1.1 Overview of High Altitude Wind Power

EXECTER 1.
 1.1 Overview of High Altitude Wind Power

1.1 Overview of High Altitude Wind Power

1.1 Overview of High Altitude Wind Power

1.1 Solar and wind have emerged as two major sources of renewable energy in the la Solar and wind have emerged as two major sources of renewable energy in the last two

Solar and wind have emerged as two major sources of renewable energy in the last two

solar and wind have emerged as two major sources **CHAPTER 1.**
 INTRODUCTION
 1.1 Overview of High Altitude Wind Power

Solar and wind have emerged as two major sources of renewable energy in the last two

decades [1]. Solar power generating system has a lower power **CHAPTER 1.**
 COMPARE TO THE POSE INTRODUCTION
 1.1 Overview of High Altitude Wind Power

Solar and wind have emerged as two major sources of renewable energy in the last two

decades [1]. Solar power generating syste **INTRODUCTION**
 1.1 Overview of High Altitude Wind Power

Solar and wind have emerged as two major sources of renewable energy in the last two

decades [1]. Solar power generating system has a lower power density (150-2 **INTRODUCTION**
 1.1 Overview of High Altitude Wind Power

Solar and wind have emerged as two major sources of renewable energy in the last two

decades [1]. Solar power generating system has a lower power density (150-2 **1.1 Overview of High Altitude Wind Power**
Solar and wind have emerged as two major sources of renewable energy in the last two
decades [1]. Solar power generating system has a lower power density (150-250 W=m²) as
comp 1.1 Overview of High Altitude Wind Power
Solar and wind have emerged as two major sources of renewable energy in the last two
decades [1]. Solar power generating system has a lower power density (150-250 W=m²) as
compar 1.1 OVerView of High Altitude Wind Fower
Solar and wind have emerged as two major sources of renewable energy in the last two
decades [1]. Solar power generating system has a lower power density (150-250 W=m²) as
compar Solar and wind have emerged as two major sources of renewable energy in the last two
decades [1]. Solar power generating system has a lower power density (150-250 W=m²) as
compared to the power density of conventional t decades [1]. Solar power generating system has a lower power density (150-250 W=m²) as
compared to the power density of conventional thermal power generating system (1000-1200
W=m²). Whereas, a conventional wind power compared to the power density of conventional thermal power generating system (1000-1200 W=m²). Whereas, a conventional wind power (CWP) generating system requires huge civil constructions and suffers from low capacity f W=m²). Whereas, a conventional wind power (CWP) generating system requires huge civil
constructions and suffers from low capacity factor (30-35%) [2] (Capacity factor is defined as
the ratio of actual output energy over constructions and suffers from low capacity factor (30-35%) [2] (Capacity factor is defined as
the ratio of actual output energy over a period of time to potential output energy, if it were
possible for it to operate at t the ratio of actual output energy over a period of time to potential output energy, if it we
possible for it to operate at the rated power indefinitely) [3]. Due to these reasons, is
penetration of renewable energy source d power is proportional to the cube of the wind sp

a, A_T, as mentioned in equation 1.1(a) a large am

th reduced turbine size.
 $r = \frac{1}{2} \rho C_P A_T v^3$
 $= v_0 \left[\frac{\ln(\frac{h}{z_0})}{\ln(\frac{h_0}{z_0})} \right]$

Equation 1.1 (a)

nerating

$$
P_{air} = \frac{1}{2} \rho C_P A_T v^3
$$

$$
v(h) = v_0 \left[\frac{\ln(\frac{h}{z_0})}{\ln(\frac{h_0}{z_0})} \right]
$$

Pair $P_{air} = \frac{1}{2} \rho C_P A_T v^3$.
 $V(h) = v_0 \left[\frac{\ln(\frac{h}{z_0})}{\ln(\frac{h_0}{z_0})} \right]$

Equation 1.1(a) a large amount of
 $v(h) = v_0 \left[\frac{\ln(\frac{h}{z_0})}{\ln(\frac{h_0}{z_0})} \right]$

Equation 1.1(a)

P_{air} is rated power of HAWP generating system, P_{air} is rated power of HAWP generating system, A_T is swept area of rotor blade in m², 0 is $P_{air} = \frac{1}{2} \rho C_P A_T v^3$
 $v(h) = v_0 \left[\frac{ln(\frac{h_0}{z_0})}{ln(\frac{h_0}{z_0})} \right]$

Equation 1.1 (a)
 P_{air} is rated power of HAWP generating system, A_T is swept area of rotor blade in m², o is

the known velocity of wind in m=s $P_{air} = \frac{1}{2} \rho C_P A_T v^3$
 $v(h) = v_0 \left[\frac{\ln(\frac{h_0}{z_0})}{\ln(\frac{h_0}{z_0})} \right]$

Equation 1.1 (a)
 P_{air} is rated power of HAWP generating system, A_T is swept area of rotor blade in m², 0 is

the known velocity of wind in m=s $P_{wir} = \frac{1}{2} \rho C_P A_T v \hat{U} \hat{U}$
 $v(h) = v_0 \begin{bmatrix} ln(\frac{h_0}{z_0}) \\ ln(\frac{h_0}{z_0}) \end{bmatrix}$

Equation 1.1 (a)
 P_{air} is rated power of HAWP generating system, A_T is swept area of rotor blade in m², o is

the known velocity of w $v(h) = v_0 \left[\frac{ln(\frac{h}{z_0})}{ln(\frac{h_0}{z_0})} \right]$
Equation 1.1 (a)
Pair is rated power of HAWP generating system, A_T is swept area of rotor blade in m², 0 is
the known velocity of wind in m=s at carth surface, (h) is the spe

IR@AIKTC aiktcdspace.org

aiktcdspace.org

Power generated by the wind turbine is a function of power coefficient (maximum value of

%), turbine swept area A_T and wind speed v. To increase the generated power in case of

ventional wind energy gen FREE POSTANTIC aiktcdspace.org

59.3%), turbine swept area A_T and wind speed v. To increase the generated power in case of

59.3%), turbine swept area A_T and wind speed v. To increase the generated power in case of

c R@AIKTC

Power generated by the wind turbine is a function of power coefficient (maximum value of

59.3%), turbine swept area A_T and wind speed v. To increase the generated power in case of

conventional wind energy gene R@AIKTC

Power generated by the wind turbine is a function of power coefficient (maximum value of

59.3%), turbine swept area A_T and wind speed v. To increase the generated power in case of

conventional wind energy gene R@AIKTC aiktcdspace.org aiktcdspace.org aiktcdspace.org aiktcdspace.org about the surface as expressed in equation of power coefficient (maximum value of 59.3%), turbine swept area A_T and wind speed v. To increase the g R@AIKTC and the wind turbine is a function of power coefficient (maximum value of 59.3%), turbine swept area A_T and wind speed v. To increase the generated power in case of conventional wind energy generation, swept are R@AIKTC and the wind turbine is a function of power coefficient (maximum value of 59.3%), turbine swept area A_T and wind speed v. To increase the generated power in case of conventional wind energy generation, swept area Power generated by the wind turbine is a function of power coefficient (maximum value of 59.3%), turbine swept area A_T and wind speed v. To increase the generated power in case of conventional wind energy generation, sw Power generated by the wind turbine is a function of power coefficient (maximum value of 59.3%), turbine swept area A_T and wind speed v. To increase the generated power in case of conventional wind energy generation, sw 59.3%), turbine swept area A_T and wind speed v. To increase the generated power in case of conventional wind energy generation, swept area of the turbine can be increased by increasing the diameter of turbine rotor. In conventional wind energy generation, swept area of the turbine can be increased by increasing the diameter of turbine rotor. In contrast, velocity of wind increases with altitude above the earth surface as expressed in equ the diameter of turbine rotor. In contrast, velocity of wind increases with altitude above the carth surface as expressed in equation 1.1 (a). Velocity of wind reaches maximum of about 50m/s at an altitude of 9-10km above earth surface as expressed in equation 1.1 (a). Velocity of wind reaches maximum of about 50m/s at an altitude of 9-10km above sea level. Since wind power is linearly proportional to turbine swept area and proportional to

R@AIKTC
CHAPTER 2.
OBJECTIVE AND PROBLEM OVERVIEW
2.1 Objective aiktcdspace.org
 OBJECTIVE AND PROBLEM OVERVIEW

ve

s at higher altitudes become steadier, more persistent, and of higher velocity. **2.1Objective

Winds at higher altitudes become stead

2.1 Objective**

Winds at higher altitudes become stead

Because power available in wind increase

velocity-cubed law) assuming other paramet

THER 2.

OBJECTIVE AND PROBLEM OVERVIEW

Dijective

Winds at higher altitudes become steadier, more persistent, and of higher velocity.

E power available in wind increases as the cube of velocity (the

-cubed law), assumi **CHAPTER 2.**
 OBJECTIVE AND PROBLEM OVERVIEW

2.1 Objective

Winds at higher altitudes become steadier, more persistent, and of higher velocity.

Because power available in wind increases as the cube of velocity (the

v **CHAPTER 2.**
 OBJECTIVE AND PROBLEM OVERVIEW

2.1 Objective

Winds at higher altitudes become steadier, more persistent, and of higher velocity.

Because power available in wind increases as the cube of velocity (the

v **CHAPTER 2.**
 OBJECTIVE AND PROBLEM OVERVIEW

2.1 Objective

Winds at higher altitudes become steadier, more persistent, and of higher velocity.

Because power available in wind increases as the cube of velocity (the

v **OBJECTIVE AND PROBLEM OVERVIEW**
2.1 Objective
Winds at higher altitudes become steadier, more persistent, and of higher velocity.
Because power available in wind increases as the cube of velocity (the
velocity-cubed law) 2.1 Objective
Winds at higher altitudes become steadier, more persistent, and of higher velocity.
Because power available in wind increases as the cube of velocity (the
velocity-cubed law), assuming other parameters remai **2.1 Objective**
Winds at higher altitudes become steadier, more persistent, and of higher velocity.
Because power available in wind increases as the cube of velocity (the
velocity-cubed law), assuming other parameters rem **2.1 Objective**
Winds at higher altitudes become steadi
Because power available in wind increase
velocity-cubed law), assuming other paramet
velocity gives $2^3=8$ times the power; tripling
power. With steadier and more p Winds at higher altitudes become steadier, more persistent, and of higher velocity.

e power available in wind increases as the cube of velocity (the

-cubed law), assuming other parameters remaining the same, doubling a Because power available in wind increases as the cube of velocity (the velocity-cubed law), assuming other parameters remaining the same, doubling a wind's velocity gives $2^3=8$ times the power; tripling the velocity giv Figure 2.4 The stating of altitudes there are altitude winds are altitude wind a wind solve $2^{3}=8$ times the power; tripling the velocity gives $3^{3}=27$ times the available With steadier and more predictable winds, highrelocity gives 2³–8 times the power; tripling the velocity gives 3³–27 times the available
power. With steadier and more predictable winds, high-altitude wind has an advantage over
wind near the ground. Being able to l

power. With steadier and more predictable winds, high-altitude wind has an advantage over
wind near the ground. Being able to locate HAWP to effective altitudes and using the vertical
dimension of airspace for wind farming wind near the ground. Being able to locate HAWP to effective altitudes and using the vertical
dimension of airspace for wind farming brings further advantage using high-altitude winds for
generating energy.
High-altitude w dimension of airspace for wind farming brings further advantage using high-altitude winds for
generating energy.
High-altitude wind generators can be adjusted in height and position to maximize energy
return, which is impr emerating energy.

High-altitude wind generators can be adjusted in height and position to maximize energy

return, which is impractical with fixed tower-mounted wind generators.

In each range of altitudes there are altit High-altitude wind generators can be adjusted in height and position to maximize energy
return, which is impractical with fixed tower-mounted wind generators.
In each range of altitudes there are altitude-specific concerns

IR@AIKTC aiktcdspace.org

- **2.2 Problem Definition**
2.2 Problem Definition
Wind power must still compete with conventional gene
Depending on how energetic a wind site is, the wind farm mi aiktcdspace.org

2.2 Problem Definition

Wind power must still compete with conventional generation sources on a cost basis.

Depending on how energetic a wind site is, the wind farm might not be cost competitive. Even

th aiktcdspace.org

2.2 Problem Definition

Wind power must still compete with conventional generation sources on a cost basis.

Depending on how energetic a wind site is, the wind farm might not be cost competitive. Even

th and
 2.2 Problem Definition

Wind power must still compete with conventional generation sources on a cost basis.

Depending on how energetic a wind site is, the wind farm might not be cost competitive. Even

though the c republem**a** higher initial incompton with conventional generation sources on a cost basis.

Depending on how energetic a wind site is, the wind farm might not be cost competitive. Even

though the cost of wind power has d **2.2 Problem Definition**
Wind power must still compete with conventional generation sources on a cost basis.
Depending on how energetic a wind site is, the wind farm might not be cost competitive. Even
though the cost of w **2.2 Problem Definition**
Wind power must still compete with conventional generation sources on a cost basis.
Depending on how energetic a wind site is, the wind farm might not be cost competitive. Even
though the cost of w The costs of expanding wind conventional generation sources on a cost basis.

Depending on how energetic a wind site is, the wind farm might not be cost competitive. Even

though the cost of wind power has decreased dramat
- Depending on how energetic a wind site is, the wind farm might not be cost competitive. Even
though the cost of wind power has decreased dramatically in the past 10 years, the technology
requires a higher initial investmen mouththe cost of wind power has decreased dramatically in the past 10 years, the technology
requires a higher initial investment than fossil-fueled generators.

• Good wind sites are often located in remote locations, far Goodwind sites are often located in remote locations, far from cities where the electricity is needed. Transmission lines must be built to bring the electricity from the wind farm to the city. However, building just a few readed.Transmission lines must be built to bring the electricity from the wind farm to the city.

However, building just a few already-proposed transmission lines could significantly reduce

the costs of expanding wind en
-
-
- the costs of expanding wind energy.

Wind resource development might not be the most profitable use of the land. Land suitable for

wind-turbine installation must compete with alternative uses for the land, which might be
 Wind resource development might not be the most profitable use of the land. Land suitable 1 wind-turbine installation must compete with alternative uses for the land, which might more highly valued than electricity generat

R@AIKTC
CHAPTER 3.
LITERATURE SURVEY
3.1 Introduction

aiktcdspace.org
 LITERATURE SURVEY

The available the paper gives an alternative solution for the depleting R@AIKTC
 CHAPTER 3.

LITERATURE S

3.1 Introduction

As per the literature available the paper g

energy sources on earth. FIER 3.

LITERATURE SURVEY

As per the literature available the paper gives an alternative solution for the depleting

Sources on earth.

Example: the depleting

Example: the depleting

Example: the depleting

Example: the R@AIKTC
 CHAPTER 3.

LITERATURE SURV

3.1 Introduction

As per the literature available the paper gives as

energy sources on earth.

3.2 Literature Review

In this section various papers on High Altitude W! **CHAPTER 3.**

LITERATURE SURVEY

3.1 Introduction

As per the literature available the paper gives an alternationergy sources on earth.

3.2 Literature Review

In this section various papers on High Altitude Wind Power

Je

INTERATURE SURVEY
 INTERATURE SOLUTE INTERATOR
 INTERATURE SOLUTE ALTERATOR
 INTERATOR
 LITERATURE SURVEY

As per the literature available the paper gives an alternative solution for the depleting

sources on earth.
 Exercuan Adhikari, Student Member,IEEE, S.K.Panda, Senior Member, IEEE, Department
 Deev 3.1 Introduction

As per the literature available the paper gives an alternative solution for the depleting

energy sources on earth.
 3.2 Literature Review

In this section various papers on High Altitude Wind Power a **3.1 Introduction**

As per the literature available the paper gives an alternative solution for the depleting

energy sources on earth.
 3.2 Literature Review

In this section various papers on High Altitude Wind Power a System." This paper represents a high altitude (HAWP) generating system supported by light and computer Exercise Conserved.

System. This section various papers on High Altitude Wind Power are being reviewed.

Jeevan Adhik As per the literature available the paper gives an alternative solution for the depleting
energy sources on earth.

3.2 Literature Review

In this section various papers on High Altitude Wind Power are being reviewed.

Jec **3.2 Literature Review**

In this section various papers on High Altitude Wind Power are being reviewed.

Jeevan Adhikari, Student Member, IEEE, S.K.Panda, Senior Member, IEEE, Department

of Electrical and Computer Enginee **3.2 Literature Review**
In this section various papers on High Altitude Wind Power are being reviewed.
Jeevan Adhikari, Student Member, IEEE, S.K.Panda, Senior Member, IEEE, Department
of Electrical and Computer Engineerin In this section various papers on High Altitude Wind Power are being reviewed.
Jeevan Adhikari, Student Member, IEEE, S.K.Panda, Senior Member, IEEE, Department
of Electrical and Computer Engineering,National University of Jeevan Adhikari, Student Member, IEEE, S.K. Panda, Senior Member, IEEE, Department
of Electrical and Computer Engineering, National University of Singapore, Singapore,
"Generation and Transmission of Electrical Energy in H of Electrical and Computer Engineering, National Uni

"Generation and Transmission of Electrical Energy in High

System." This paper represents a high altitude (HAWP) ger

gas filled blimp/ aerostat that extracts electrica neration and Transmission of Electrical Energy in High Altitude Wind Power Generating
em." This paper represents a high altitude (HAWP) generating system supported by light
filled blimp/ acrostat that extracts electrical e System." This paper represents a high altitude (HAWP) generating system supported by light
gas filled blimp/ acrostat that extracts electrical energy from high altitudes streamlined wind.
The optimal generation for increas gas filled blimp/ aerostat that extracts electrical energy from high altitudes streamlined wind.
The optimal generation for increasing efficiency and transmission mechanism that gives suitable
power to weight ratio (P/W) a

The optimal generation for increasing efficiency and transmission mechanism that gives suitable
power to weight ratio (P/W) and the efficiency of the overall system is reviewed .The selected
optimal electrical architecture power to weight ratio (P/W) and the efficiency of the overall system is reviewed .The selected
optimal electrical architecture simplifies electric system by transferring power electronic
converter from the air borne unit t optimal electrical architecture simplifies electric system by transferring power electronic
converter from the air borne unit to the ground based system and thereby improves the P/W
ratio by a factor of 7% approximately.
L converter from the air borne unit to the ground based system and thereby improves the P/W
ratio by a factor of 7% approximately.
Jeevan Adhikari, Student Member,IEEE, S.K.Panda, Senior Member, IEEE, Akshay
Kumar Rathore, S ratio by a factor of 7% approximately.

Jeevan Adhikari, Student Member, IEEE, Department of Electrical and Computer

Engineering, National University of Singapore, Singapore, "Harnessing High Altitude Wind

Power Using Li Jeevan Adhikari, Student Member, JEEE, S.K.Panda, Senior Member, IEEE, Akshay
Kumar Rathore, Senior Member, IEEE, Department of Electrical and Computer
Engineering, National University of Singapore, Singapore, "Harnessing Kumar Rathore, Senior Member, IEEE, Department of Electrical and Computer Engineering, National University of Singapore, Singapore, "Harnessing High Altitude Wind Power Using Light Gas Filled Blimp." This paper presents a Engineering, National University of Singapore, Singapore, "Harnessing High Altitude Wind
Power Using Light Gas Filled Blimp." This paper presents a simple concept of harvesting high
altitude wind power using air borne wind Power Using Light Gas Filled Blimp." This paper presents a simple concept of harvesting high altitude wind power using air borne wind turbine cum eletric generators supported by light gas filled blimp / acrostat. Air wind altitude wind power using air borne wind turbine cum eletric generators supported by light gas filled blimp / acrostat. Air wind turbine at high altitude extracts kinetic energy from the high speed streamlined wind using b

IR@AIKTC and the contract of t

France Conservant Adhikari, Student Member,IEEE, S.K.Panda, Senior Member, IEEE, Akshay
Rathore, Senior Member, IEEE,Department of Electrical and Computer
Pering,National University of Singapore,Singapore," Modelling, Desi R@AIKTC
Jeevan Adhikari, Student Member,IEEE, S.K.Panda, Senior Member, IEEE, Akshay
Kumar Rathore, Senior Member, IEEE,Department of Electrical and Computer
Engineering,National University of Singapore,Singapore," Modelli aiktcdspace.org

Jeevan Adhikari, Student Member,IEEE, S.K.Panda, Senior Member, IEEE, Akshay

Kumar Rathore, Senior Member, IEEE,Department of Electrical and Computer

Engineering,National University of Singapore,Singapor aiktcdspace.org

Jeevan Adhikari, Student Member,IEEE, S.K.Panda, Senior Member, IEEE, Akshay

Kumar Rathore, Senior Member, IEEE,Department of Electrical and Computer

Engineering,National University of Singapore,Singapor alktdspace.org

Jeevan Adhikari, Student Member, IEEE, S.K.Panda, Senior Member, IEEE, Akshay

Kumar Rathore, Senior Member, IEEE,Department of Electrical and Computer

Engineering,National University of Singapore,Singapor alktraching and Adhikari, Student Member, IEEE, S.K. Panda, Senior Member, IEEE, Akshay
Kumar Rathore, Senior Member, IEEE, Department of Electrical and Computer
Engineering, National University of Singapore, Singapore, "M and Control of the inverter converter (PED, S.K.Panda, Senior Member, IEEE, Akshay
Kumar Rathore, Senior Member, IEEE,Department of Electrical and Computer
Engineering,National University of Singapore,Singapore," Modelling Jeevan Adhikari, Student Member, IEEE, S.K.Panda, Senior Member, IEEE, Akshay
Kumar Rathore, Senior Member, IEEE, Department of Electrical and Computer
Engineering,National University of Singapore,Singapore," Modelling, De Jeevan Adhikari, Student Member, IEEE, S.K.Panda, Senior Member, IEEE, Aksha
Kumar Rathore, Senior Member, IEEE,Department of Electrical and Comput
Engineering,National University of Singapore,Singapore," Modelling, Design

R@AIKTC
 CHAPTER 4.

BLOCK

DIAGRAM

BLOCK

DIAGRAM

Frequenceof the higher velocity and persistence of wind at high altitudes, while avoiding the expense of tower construction,^[5] thus benefiting from more mechanical and aerodynamic options, the higher velocity and persi Air-borne Turbine

Tigure 4

An airborne Turbine

An airborne wind turbine is a design concept for a wind turbine with a rotor supported

in the air without a tower,^[5] thus benefiting from more mechanical and aerodynami may be on the ground or airborne. Challenges include safely suspending and maintaining turbines have been the ground or airborne. Challenges include safely suspending and maintaining turbines hundreds of meters of the grou **4.1Air-borne Turbine**
An airborne wind turbine is a design concept for a wind turbine with a rotor supported
in the air without a tower.^[5] thus benefiting from more mechanical and aerodynamic options,
the higher velo **4.1Air-borne Turbine**
An airborne wind turbine is a design concept for a wind turbine with a rotor supported
in the air without a tower,^[5] thus benefiting from more mechanical and acrodynamic options,
the higher velo An airborne wind turbine is a design concept for a wind turbine with a rotor supported
e air without a tower,^[5] thus benefiting from more mechanical and aerodynamic options,
higher velocity and persistence of wind at h Anarroome wind turbine is a design concept for a wind turbine with a rotor supported
in the air without a tower,^[5] thus benefiting from more mechanical and aerodynamic options,
the higher velocity and persistence of w in the air without a tower, $c-1$ thus benefiting from more meentanical and aerodynamic options,
the higher velocity and persistence of wind at high altitudes, while avoiding the expense of
tower construction,^[6] or the

themigner velocity and persistence or wind at nigh antivaces, while avoiding the expense or
tower construction,^[6] or the need for slip rings or yaw mechanism. An electrical generator
may be on the ground or airborne. towerconstruction,^[0] or the need for slip rings or yaw mechanism. An electrical generator may be on the ground or airborne. Challenges include safely suspending and maintaining turbines hundreds of meters off the groun maybe on the ground or airborne. Challenges include safely suspending and maintaining
turbines hundreds of meters off the ground in-high winds and storms, transferring the
harvested and/or generated power back to earth, turbines hundreds of meters off the **ground** in-high winds and storms, transferring the harvested and/or generated power back to earth, and interference with aviation.^[7] Airborne wind turbines may operate in low or high harvested and/or generated power back to earth, and interference with aviation.^[7]
Airborne wind turbines may operate in low or high altitudes; they are part of a wider class
of Airborne Wind Energy Systems (AWES) addres Airborne wind turbines may operate in low or high altitudes; they are part of a wider class
of Airborne Wind Energy Systems (AWES) addressed by high-altitude wind power and
crosswind kite power. When the generator is on t

IR@AIKTC aiktcdspace.org

aiktcdspace.org
schemesrequire a long power cable and, if the turbine is high enough, a [prohibited airspace](https://en.wikipedia.org/wiki/Prohibited_airspace)
zone. As of July 2015, no commercial airborne wind turbines are in regular operation.^[9] zone. As of July 2015, no commercial airborne wind turbine is high enough, a prohibited airspace
zone. As of July 2015, no commercial airborne wind turbines are in regular operation.^[9]
4.2 PMSG (Permanent Magnet Synchro **a**
4.2PMSG (Permanent magnet is space and, if the turbine is high enough, a prohibited airspace
 4.2 PMSG (Permanent **Magnet Synchronous Generator)**

A permanent magnet synchronous generator is a generator where the

aiktcdspace.org

s require a long power cable and, if the turbine is high enough, a prohibited airspace

s of July 2015, no commercial airborne wind turbines are in regular operation.^[9]
 A permanent Magnet Synchronous provided and a commercial airborne wind turbine is high enough, a prohibited airspace

schemes require a long power cable and, if the turbines are in regular operation.^[9]
 4.2 PMSG (Permanent Magnet Synchronous Generat schemes require a long power cable and, if the turbine is high enough, a prohibited airspace
zone. As of July 2015, no commercial airborne wind turbines are in regular operation.^[9]
4.2 PMSG (Permanent Magnet Synchronous schemes require a long power cable and, if the turbine is high enough, a prohibited airspace
zone. As of July 2015, no commercial airborne wind turbines are in regular operation.^[9]
4.2 PMSG (Permanent Magnet Synchronous zone. As of July 2015, no commercial airborne wind
 4.2 PMSG (Permanent Magnet Synchrono

A permanent magnet synchronous generator

provided by a permanent magnet instead of a coil. The

that the rotor and magnetic field

IR@AIKTC and the control of the control of

IKTC
In the majority of designs the rotating assembly in the center of the generator—the
or¹¹— contains the magnet, and the "stator" is the stationary armature that is electrically
nected to a load. As shown in the diagr aiktcdspace.org

In the majority of designs the rotating assembly in the center of the generator—the
 ["rotor](https://en.wikipedia.org/wiki/Rotor_(electric))"— contains the magnet, and the "stator" is the stationary armature that is electrically

connected to a load. As a load. The majority of designs the rotating assembly in the center of the generator—the "rotor"— contains the magnet, and the "stator" is the stationary armature that is electrically connected to a load. As shown in the d and the majority of designs the rotating assembly in the center of the generator—the "rotor"— contains the magnet, and the "stator" is the stationary armature that is electrically connected to a load. As shown in the diagr aiktedspace.org

In the majority of designs the rotating assembly in the center of the generator—the

"rotor"— contains the magnet, and the "stator" is the stationary armature that is electrically

connected to a load. As and the majority of designs the rotating assembly in the center of the generator—the "rotor"— contains the magnet, and the "stator" is the stationary armature that is electrically connected to a load. As shown in the diagr In the majority of designs the rotating assembly in the center of the generator—the "rotor"— contains the magnet, and the "stator" is the stationary armature that is electrically connected to a load. As shown in the diagra In the majority of designs the rotating assembly in the center of the generator—the "rotor"— contains the magnet, and the "stator" is the stationary armature that is electrically connected to a load. As shown in the diagra In the majority of designs the rotating assembly in the center of the generator—the "rotor"— contains the magnet, and the "stator" is the stationary armature that is electrically connected to a load. As shown in the diagra "rotor"— contains the magnet, and the "stator" is the stationary armature that is electrically
connected to a load. As shown in the diagram, the perpendicular component of the stator field
affects the torque while the para connected to a load. As shown in the diagram, the perpendicular component of the stator field affects the torque while the parallel component affects the voltage. The load supplied by the generator determines the voltage. affects the torque while the parallel component affects the voltage. The load supplied by the generator determines the voltage. If the load is inductive, then the angle between the rotor and stator fields will be greater t generator determines the voltage. If the load is inductive, then the angle between the rotor and stator fields will be greater than 90 degrees which corresponds to an increased generator voltage. This is known as an overex Solution Tields will be greater than 90 degrees which corresponds to an increased generator voltage. This is known as an overexcited generator. The opposite is true for a generator supplying a capacitive load which is know voltage. This is known as an overexcited generator. The opposite is true for a generator supplying a capacitive load which is known as an underexcited generator. A set of three conductors make up the armature winding in st supplying a capacitive load which is known as an underexcited generator. A set of three conductors make up the armature winding in standard utility equipment, constituting three phases of a power circuit—that correspond t since the amature winding in standard utility equipment, constituting three phases of a power circuit—that correspond to the three wires we are accustomed to see on transmission lines. The phases are wound such that they a phases of a power circuit—that correspond to the three wires we are acctransmission lines. The phases are wound such that they are 120 degrees apstator, providing for a uniform force or torque on the generator rotor. The t

The convert low voltage AC to medium voltage DC efficiently. Flying electric generator assume that works are electric generator (PMSG) gives better power to weight ratio in HAWP generating system [11]. The generator (PMSG) supported by a blimp has an electric machine that works in generator and full process of dide brigger ed. 3 (a) electric machine that works in generation and that works in generation mode only, so the proported by a blimp Bigure 4.3 (a)

Figure 4.3 (a)

Figure 4.3 (a)

Permanent magnet synchronous generator (PMSG) gives better power to weight ratio in

HAWP generating system [11]. The generated AC voltage needs to be converted into optimal
 Figure 4.3 (a)

Permanent magnet synchronous generator (PMSG) gives better power to weight ratio in

HAWP generating system [111]. The generated AC voltage needs to be converted into optimal

medium voltage DC for efficien Figure 4.3 (a)

Permanent magnet synchronous generator (PMSG) gives better power to weight ratio in

HAWP generating system [111]. The generated AC voltage needs to be converted into optimal

medium voltage DC for efficien Permanent magnet synchronous generator (PMSG) gives better power to weight ratio in
HAWP generating system [111]. The generated AC voltage needs to be converted into optimal
medium voltage DC for efficient transmission. So HAWP generating system [11]. The generated AC voltage needs to be converted into optimal
medium voltage DC for efficient transmission. So, the power electronic converter is designed
to convert low voltage AC to medium volt medium voltage DC for efficient transmission. So, the power electronic converter is designed
to convert low voltage AC to medium voltage DC efficiently. Flying electric generator
supported by a blimp has an electric machin to convert low voltage AC to medium voltage DC efficiently. Flying electric generator supported by a blimp has an electric machine that works in generation mode only, so the bidirectional power flow is not a requirement. T supported by a blimp has an electric machine that works in generation mode only, bidirectional power flow is not a requirement. The proposed power electronic converters and the proposed power electronic converters of diode

IR@AIKTC aiktcdspace.org

alktcdspace.org
Three phase rectifier gives rectified output to a DC chopper which is controlled using
tor current control. DC chopper cannot make unity power factor at generation side for
exphase generation but diode rect aiktcdspace.org

Three phase rectifier gives rectified output to a DC chopper which is controlled using

inductor current control. DC chopper cannot make unity power factor at generation side for

three phase generation bu alter alternative metaster and the anti-
Three phase rectifier gives rectified output to a DC chopper which is controlled using
inductor current control. DC chopper cannot make unity power factor at generation side for
thr alktcdspace.org

Three phase rectifier gives rectified output to a DC chopper which is controlled using

inductor current control. DC chopper cannot make unity power factor at generation side for

three phase generation bu alktdspace.org
Three phase rectifier gives rectified output to a DC chopper which is controlled using
inductor current control. DC chopper cannot make unity power factor at generation side for
three phase generation but di alter alternative mediated by the assemblance of three phase rectifier gives rectified output to a DC chopper which is controlled using inductor current control. DC chopper cannot make unity power factor at generation sid ROMITE

Three phase rectifier gives rectified output to a DC chopper which is controlled using

inductor current control. DC chopper cannot make unity power factor at generation side for

three phase generation but diode From the caling power later at generation is
tifier output current is controlled to get maximum
also maintains constant DC link voltage at calc
onverter is used to step up constant DC link volta
leulated in earlier subsec Where V_{dc} is DC link voltage, n is transformer turns ratio and D_{cf} is effective duty
on square Where V_{dc} is DC link voltage for DC
Where V_{dc} is DC link voltage, n is transformer turns ratio and D_{cf} is effective

From the given wind contained unto the absolutional consume DC link voltage in calculated
reference value. Isolated DC-DC converter is used to step up constant DC link voltage for DC
transmission as a function of HF trans electromechanical tether to the ground based power station and the ground based power station transforms the high altitude wind power station and D_{elf} is effective duty cycle on square wave pulse. Stepped up DC voltage transmission as a function of HF transformer turns ratio is expressed in equation below :
 $V = \frac{1}{2} N \int_{0}^{\frac{\pi}{2}} P(x) dx$

Equation 4.3 (a)

Where V_{dc} is DC link voltage, n is transformer turns ratio and D_{eff} is effect

11

R@AIKTC
4.4 Tether
Tether used for harvesting HAWP has two pri
1) To hold the blimp at a given altitude. Figure 2.1 a siktcdspace.org

Tether

Tether used for harvesting HAWP has two primary objectives:

To hold the blimp at a given altitude.

Transmit the nower efficiently to the ground based station. PAIKTC

1994 Tether

1994 Tether used for harvesting HAWP has two primary objectives:

1994 To hold the blimp at a given altitude.

2014 Transmit the power efficiently to the ground based station.

-
-

Electric current flowing through it to minimize the overall transmission loss. In addition, it should be physically resistant to radiation, humidity and other atmospheric pollution, it should be physically resistant to rad Figure 4.4 (a)
Figure 4.4 (Figure 4.4 (a)
Figure 4.4 (a)
Simple 1. The techer should have sufficient
strength and flexibility to support the air Figure 4.4 (a)
Fig shows the proposed tether for harvesting HAWP. The tether should have sufficient
tensile strength and flexibility to support the air-borne unit. It is additionally used to drag the
air-borne unit to the

Fig shows the proposed tether for harvesting HAWP. The tether should have sufficient
tensile strength and flexibility to support the air-borne unit. It is additionally used to drag the
air-borne unit to the ground based s Fig shows the proposed tether for harvesting HAWP. The tether should have sufficient
tensile strength and flexibility to support the air-borne unit. It is additionally used to drag the
air-borne unit to the ground based s tensile strength and flexibility to support the air-borne unit. It is additionally used to drag the air-borne unit to the ground based station. Tether should offer minimum resistance to the electric current flowing throug air-borne unit to the ground based station. Tether should offer minimum resistance to the electric current flowing through it to minimize the overall transmission loss. In addition, it should be physically resistant to ra electric current flowing through it to minimize the overall transmission loss. In addition, it should be physically resistant to radiation, humidity and other atmospheric pollution.
Major portion of the weight of an air-bo should be physically resistant to radiation, humidity and other atmospheric pollution.
Major portion of the weight of an air-borne unit in HAWP system is contributed by
tether. So, the weight of tether should be minimized Major portion of the weight of an air-borne unit in HAWP system is contributed by
tether. So, the weight of tether should be minimized without compromising the transmission
efficiency. DC transmission gives better power t tether. So, the weight of tether should be minimized without compromising the transmerentificiency. DC transmission gives better power to weight ratio than AC transmission requires no compensation. So, DC transmission is a

insulator. $t_{ins} = r_c \exp[\frac{ZV}{Sr_c}] - r_c$

Equation 4.4 (a)

where r_c is conductor radius, P is power level of transmission system, L is length of

n is opted transmission efficiency, _c is conductivity of the conductor and V is

ssion $u_{ins} = r_c \exp[\frac{\pi a_0}{Sr_c}] - r_c$

Equation 4.4 (a)

where r_c is conductor radius, P is power level of transmission system, L is length of

tether, n is opted transmission efficiency, c is conductivity of the conductor and V i Equation 4.

where r_c is conductor radius, P is power level

tether, n is opted transmission efficiency, c is contransmission volt-age level, t_{ins} is thickness of insulinsulator.

Overall weight of a cable depends on

Equation 4.4 (b)

Equat Where W_{eab} is the weight of a single cable, time is the thickness of insulator, con and in are
 $\iota b = \rho_{con} \pi r_c^2 L + \rho_{di} \pi L t_{ins} (2r_c + t_{ins})$

Equation 4.4 (b)

Where W_{eab} is the weight of a single cable, time is the thic Overall weight of a cable depends on the weight of conductor and w
used for insulator. Equation 4.4 (b) gives the weight of cable inside the teth
of transmission voltage.
 $W_{cab} = \rho_{con} \pi r r_c^2 L + \rho_{di} \pi L t_{ins} (2r_c$
Equation 4.4

C link side and grid connected inverter.

Ink voltage. Current flowing through the DC link
 \vec{i} \vec{j} \vec{k} \vec

CONTRACT THE VALUE OF CHIRACT CONSIDERS Equation 4.5 (a)

Where Vdc is DC link voltage, is current of DC link after buck converter, ig is current of

the grid side and C is the DC link capacitance. Considering that the gr $C \frac{d v_{dc}}{dt} i^{\text{ND1}^{\text{R}}}_{s} - i_g$
Equation 4.5 (a)
Where Vde is DC link voltage, is current of DC link after buck converter, ig is current of
DC link at the grid side and C is the DC link capacitance. Considering that th $C \frac{du_{dc}}{dt}$
Equation 4.5 (
Where Vdc is DC link voltage, is current of DC link
DC link at the grid side and C is the DC link capacitance
does not consume power.

IR@AIKTC aiktcdspace.org

aiktcdspace.org
Where Ps is generated output power by an air-borne electric generator which is equal
romagnetic power (Pe = Tews), Te is electrical torque of the generator, Ws is angular
cy of rotation of the air-borne tur R@AIKTC
Where Ps is generated output power by an air-borne electric generator which is equal
to electromagnetic power (Pe = Tews), Te is electrical torque of the generator, Ws is angular
frequency of rotation of the air-bo Frequency of rotation of the air-borne of the air-borne electric generator which is equal to electromagnetic power (Pe = Tews), Te is electrical torque of the generator, Ws is angular frequency of rotation of the air-borne EXECUTE: Where Ps is generated output power by an air-borne electric generate to electromagnetic power (Pe = Tews), Te is electrical torque of the generate frequency of rotation of the air-borne turbine. The voltage equat to electromagnetic power (Pe = Tews), Te is electrical torque of the generator, Ws is angular

frequency of rotation of the air-borne turbine. The voltage equation per phase between the

inverter leg and the grid is given

 $=\frac{1}{U_{dc}}-t_g$
Equation 4.5 (b)
 $R_{\alpha}+L_{\alpha}\frac{di_{\alpha}}{dt}$
Equation 4.5(c)
 k, V_a is output voltage of one of the leg of inverse and resistance between grid and inverter leg Equation 4.5 (b)
 $e_a = v_a + iR_a + L_a \frac{di_a}{dt}$

Equation 4.5(c)

Where ea is grid side phase voltage, Va is output voltage of one of the leg of inverter,

Ra are equivalent series inductance and resistance between grid and inve Equation 4.5 (b)
 $\mathbf{e}_{\alpha} = \mathbf{v}_{\alpha} + iR_{\alpha} + L_{\alpha}\frac{di_{\alpha}}{dt}$

Equation 4.5(c)

Where ca is grid side phase voltage, Va is output voltage of one of the leg of inverter,

La and Ra are equivalent series inductance and res phase.

 $e_a = \sqrt[n]{a} + iR_a + L_a \frac{di_a}{dt}$

Equation 4.5(c)

Where ea is grid side phase voltage, Va is output voltage of one of the leg of inverter,

Ra are equivalent series inductance and resistance between grid and inverter leg per
 $e_a = \nu_a + iR_a + L_a \frac{dL_a}{dt}$
Equation 4.5(c).
Where ea is grid side phase voltage. Va is output voltage of one of the leg of inverter,
La and Ra are equivalent series inductance and resistance between grid and inverter leg pe **Equation 4.5(c)**
 Equation 4.5(c)

Where ea is grid side phase voltage, Va is output voltage of one of the leg of inverter,

La and Ra are equivalent series inductance and resistance between grid and inverter leg per
 Equation 4.5(c)

Where ea is grid side phase voltage, Va is output voltage of one of the leg of inverter,

La and Ra are equivalent series inductance and resistance between grid and inverter leg per

phase.

Similar voltag The stating the method is expected to the leg of inverter,

La and Ra are equivalent series inductance and resistance between grid and inverter leg per

phase.

Similar voltage equations can be written for phase-b and phas Where ea is grid side phase voltage, Va is output voltage of one of the leg of inverter,

La and Ra are equivalent series inductance and resistance between grid and inverter leg per

phase.

Similar voltage equations can b

15

$$
v_d = L_d \frac{di_d}{dt} + R_s i_d - w_r L_q i_q + e_s
$$

\n
$$
v_q = L_q \frac{di_q}{dt} + R_s i_q + w_r L_d i_d
$$

\nEquation 4.5 (d)
\nWhere V_d and V_q are quadrature axes voltages of the inverter, L_d and L_q are the
\ninductances in d - q axes, id and i_q are the currents in d - q frame, Wr is angular frequency of
\ngrid.
\nActive power flow through the inverter is controlled by d- axis current control and

grid.

 $v_q = L_q \frac{di_q}{dt} + R_s i_q + w_r L_d i_d$
 E Equation 4.5 (d)

Equation 4.5 (d)

Where V_d and V_q are quadrature axes voltages of the inverter, L_d and L_q are the

nances in d - q axes, id and i_q are the currents in d - q fra $v_q = L_q \frac{di_q}{dt} + R_s i_q + w_r L_d i_d$

Equation 4.5 (d)

Where V_d and V_q are quadrature axes voltages of the inverter, L_d and L_q are the

inductances in d - q axes, id and i_q are the currents in d - q frame, Wr is angular $U_q - Lq$ \overline{dt}

Equation 4.5 (d

Where V_d and V_q are quadrature axes voltages

inductances in d - q axes, id and i_q are the currents in d-

grid.

Active power flow through the inverter is contro

reactive power i

EXECUTE: The equations for active (P) and reactive (Q)

\nW over are given by:

\n
$$
P = 1.5(V_dI_d + V_qI_q) = 1.5V_dI_d
$$
\n
$$
Q = 1.5(V_dI_q - V_qI_d) = 1.5V_dI_q
$$
\nEquation 4.5 (e)

\n
$$
M_A V_I
$$
\nMUMBAI - NDDA

\nThus, P can be controlled by I_d and Q can be controlled by I_g.

For the other power redesting curves of speed control with durbine control and the overall output power is a popular system in which the power electronic interface controls the rotor currents to achieve the variable speed Speed controller
 Solution Control
 Controller Strate Control Pierre Strate Control
 Controller Strate Control
 Controller Strate Control
 Controller Strate Control
 Controller Control
 Controller Controller C Wind turbine control

Figure 5

Supposed all of PLECS

of the verial domains are prover electronics only process the

note of the pr Figure 5
The doubly-fed induction generator (DFIG) system is a popular system in which the power
electronic interface controls the rotor currents to achieve the variable speed necessary for
maximum energy capture in variab The doubly-fed induction generator (DFIG) system is a popular system in which the power
electronic interface controls the rotor currents to achieve the variable speed necessary for
maximum energy capture in variable winds. The doubly-fed induction generator (DFIG) system is a popula
electronic interface controls the rotor currents to achieve the v
maximum energy capture in variable winds. Because the power
rotor power, typically less than 25

IR@AIKTC aiktcdspace.org

5.1 Wind Profile Model

The basic wind profile is generally taken from meteorological

the ground level. In this model, the basic wind profile can be estin aiktcdspace.org
 Wind Profile Model

The basic wind profile is generally taken from meteorological department at 10 meters from

ground level. In this model, the basic wind profile can be estimated by power law profile a the ground level. In this model, the basic wind profile can be estimated by power law profile as
the ground level. In this model, the basic wind profile can be estimated by power law profile as
shown below : R@AIKTC

5.1 Wind Profile Model

The basic wind profile is generally taken from r

the ground level. In this model, the basic wind profil

shown below : aken from meteorological department at 10 met

c wind profile can be estimated by power law p
 $\left(\frac{h}{h_c}\right)^{\alpha(\tau_o, h_o)}$

Equation 5.1 (a)

reference wind speed in meter per second. h and tower horizontally in meters, and

$$
v = v_o \left(\frac{h}{h_o}\right)^{\alpha(v_o, h_o)}
$$

The basic wind profile is generally taken from meteorological department at 10 meters from
ground level. In this model, the basic wind profile can be estimated by power law profile as
whelow:
 $\mathbf{v} = \mathbf{v}_{\alpha} \left(\frac{\hbar}{h_{\$ the ground level. In this model, the basic wind profile can be estimated by power law profile as
shown below:
 $V = V_o \left(\frac{h}{h_o}\right)^{\alpha(\gamma_o, k_o)}$
Equation 5.1 (a)
where v and vo are the desired and reference wind speed in meter p shown below:
 $V = V_o \left(\frac{h}{h_o}\right)^{\alpha(\nu_o, \lambda_o)}$

Equation 5.1 (a)

where v and vo are the desired and reference wind speed in meter per second. h and ho are

the desired and reference elevation of wind tower horizontally in me $v = v_o \left(\frac{h}{h_o}\right)^{\alpha(v_o, h_o)}$
Equation 5.1 (a)

where v and vo are the desired and reference wind speed in meter per second. h

the desired and reference elevation of wind tower horizontally in meters, and α is the

expon

IR@AIKTC aiktcdspace.org

S. **2 DFIG Model**

The DFIG model uses wound rotor induction generation

uency and voltage amplitudes separately using rotor verter, to maximize the variable speed operation. The state MIKTC

The DFIG Model

The DFIG model uses wound rotor induction generator (WRIG), which controls the

uency and voltage amplitudes separately using rotor winding with back-to-back power

verter, to maximize the variable s frequency and voltage amplitudes separately using rotor winding with back-to-back power R@AIKTC

5.2 DFIG Model

The DFIG model uses wound rotor induction generator (WRIG), which controls the

frequency and voltage amplitudes separately using rotor winding with back-to-back power

converter, to maximize the v aiktedspace.org
 5.2 DFIG Model

The DFIG model uses wound rotor induction generator (WRIG), which controls the

frequency and voltage amplitudes separately using rotor winding with back-to-back power

converter, to maxi aiktcdspace.org

5.2 DFIG Model

The DFIG model uses wound rotor induction generator (WRIG), which controls the

frequency and voltage amplitudes separately using rotor winding with back-to-back power

converter, to maximi **5.2 DFIG Model**
The DFIG model uses wound rotor induction generator (WRIG), which controls the
frequency and voltage amplitudes separately using rotor winding with back-to-back power
converter, to maximize the variable sp 5.2 DFIG Model
The DFIG model uses wound rotor induction generator (WRIG), which controls the
frequency and voltage amplitudes separately using rotor winding with back-to-back power
converter, to maximize the variable spee **5.2 DFIG Model**
The DFIG model uses wound rotor induction generator (WRIG), which confrequency and voltage amplitudes separately using rotor winding with back-to-ba converter, to maximize the variable speed operation. The **5.2 BFTG MOdel**

The DFIG model uses wound rotor induction generator (WRIG), which

uency and voltage amplitudes separately using rotor winding with back-to-

verter, to maximize the variable speed operation. The stator w verter, to maximize the variable speed operation. The stator winding is directly coupled with
ibuted power grid through a transformer The scaling of induction generator power follows
power turbine rating. To size the point distributed power grid through a transformer The scaling of induction generator power follows
the power turbine rating. To size the point of common coupling (PCC) of wind turbine, define
the bus voltage level of the distri

the power turbine rating. To size the point of common coupling (PCC) of wind turbine, define
the bus voltage level of the distributed power grid, and then select the appropriate capacity of the
generator apparent power as the bus voltage level of the distributed power grid, and then select the appropriate capacity of the
generator apparent power as stated in. In this model, the grid bus voltage is 230 V. DFIG
electrical data are technically generator apparent power as stated in. In this model, the grid bus voltage is 230 V. DFIG
electrical data are technically presented in result section.
5.3 Reactive Power Control Strategy
Voltage-reactive power control stra electrical data are technically presented in result section.

5.3 Reactive Power Control Strategy

Voltage-reactive power control strategy is one of the main useful assessments for the power

quality and power system stabi 5.3 Reactive Power Control Strategy
Voltage-reactive power control strategy is one of the main useful assessments for the power
quality and power system stability issues. In order to eliminate the negative effect of absorb **5.3 Reactive Power Control Strategy**
Voltage-reactive power control strategy is one of the main useful assessments for the power
quality and power system stability issues. In order to eliminate the negative effect of abs Voltage-reactive power control strate
quality and power system stability issues
reactive power produced from WTG,
appropriate amount of volt-ampere react
factor. In this paper, Back-to-Back power
compensation. The back-to Figure 1 a DF10-based while generator system

rail power flow. The two-level PWM converters (ro

trol schemes are depicted in Fig and can be express
 $\frac{d\psi_{s(\omega bc)}}{dt}$
 $\frac{d\psi_{r(\omega bc)}}{dt}$
 $\frac{d\psi_{r(\omega bc)}}{dt}$

Equation 5.3 (

$$
V_{s(abc)} = R_{t}i_{s(abc)} + \frac{d\psi_{s(abc)}}{dt}
$$

\n
$$
V_{r(abc)} = R_{r}i_{r(abc)} + \frac{d\psi_{r(abc)}}{dt}
$$

\nEquation 5.3 (a)
\nwhere v_{s(abc)} and v_{r(abc)} are the stator and rotor voltages, R_{s(}
\nrotor resistance, i_{s(abc)} and i_{r(abc)} are the stator and rotor current
\nstator and rotor flux linkage.

 $V_{s(abc)} = R_{t}i_{s(abc)} + \frac{d\psi_{s(abc)}}{dt}$
 $V_{r(abc)} = R_{r}i_{r(abc)} + \frac{d\psi_{r(abc)}}{dt}$

Equation 5.3 (a)

where $v_{s(abc)}$ and $v_{r(abc)}$ are the stator and rotor voltages, R_{s(abc)} and R_{r(abc)} are the stator and

r resistance, $i_{s(abc)}$ a $V_{s(abc)}$ $\downarrow R_i i_{s(abc)} + \frac{d\psi_{s(abc)}}{dt}$
 $V_{r(abc)} = R_r i_{r(abc)} + \frac{d\psi_{r(abc)}}{dt}$

Equation 5.3 (a)

where $v_{s(abc)}$ and $v_{r(abc)}$ are the stator and rotor voltages, $R_{s(abc)}$ and $R_{r(abc)}$ are the stator and

rotor resistance, $i_{s(abc)}$

EXECUTE:
 5.3.1 Rotor Side Converter (RSC) Control

The RSC controls the active and reactive power independently using space vector control applies synchronously rotating reference frame transformation (d-control appli aiktedspace.org

5.3.1 Rotor Side Converter (RSC) Control

The RSC controls the active and reactive power independently using space vector control.

space vector control applies synchronously rotating reference frame trans R@AIKTC

5.3.1 Rotor Side Converter (RSC) Control

The RSC controls the active and reactive power independently using space vector control.

The space vector control applies synchronously rotating reference frame transform aiktcdspace.org

5.3.1 Rotor Side Converter (RSC) Control

The RSC controls the active and reactive power independently using space vector control.

The space vector control applies synchronously rotating reference frame t EXECT THE RSC control applies synchronously rotating reference frame transformation (d-q axis) for controlling the inrush rotor current. The direct- quadratic axes use the stator-flux vector position to orient the referenc **5.3.1 Rotor Side Converter (RSC) Control**
The RSC controls the active and reactive power independently using space vector control.
The space vector control applies synchronously rotating reference frame transformation (d

Figure 1. The direct-quadratic axes use the stator-link
of the rotor quantities. Therefore, the stator active (P
plemented in as shown.
 $\frac{3}{2} \left(\frac{v_s^2}{L_s \omega_s} - \frac{v_s L_m}{L_s} i_{rd_ref} \right)$
 $\frac{3}{2} v_s \frac{L_m}{L_s} i_{rq_ref}$
Equation 5

tive (Qs) power quantities are implemented in as shown.
 $Q_5 = \frac{3}{2} \left(\frac{v_s^2}{L_s \omega_s} - \frac{v_s L_m}{L_s} i_{rd_rq} \right)$
 $P_6 = \frac{3}{2} v_s \frac{L_m}{L_s} i_{rd_rq}$

Equation 5.3.1 (a)

where i_{rd_ref} is the reference for the direct rotor curren $Q_s = \frac{3}{2} \left(\frac{v_s^2}{L_s \omega_s} - \frac{v_s L_m}{L_s} i_{rd_ref} \right)$
 $P_s = \frac{3}{2} v_s \frac{L_m}{L_s} i_{rd_ref}$

Equation 5.3.1 (a)

Where i_{rd_ref} is the reference for the direct rotor current and i_{rq_ref} is the reference for the

quadrature rotor c $Q_s = \frac{3}{2} \left(\frac{v_s^2}{L_s \omega_s} - \frac{v_s L_m}{L_s} i_{rd_ref} \right)$
 $P_s = \frac{3}{2} v_s \frac{L_m}{L_s} i_{rd_ref}$

Equation 5.3.1 (a)

Where i_{d ref} is the reference for the direct rotor current and i_{gner} is the reference for the

quadrature rotor cu $Q_s = \frac{1}{2} \left(\frac{z}{L_s \omega_s} - \frac{z}{L_s} \right)$
 $P_s = \frac{3}{2} \sqrt{\frac{L_m}{L_s}} i$

Equation 5.3.1 (a)

where i_{rd_ref} is the reference for the direct rotor current

quadrature rotor current. According to eqn, the reactive

whereas the act

To established the three-phase reference rotor current $(i_{r(abc-rei)})$ for PWM RSC firing
ches, PI controller is involved to eliminate the possible error between the generated rotor
d (ω_r) and reference rotor speed (ω_{r_ref **R@AIKTC**
aiktcdspace.org
aiktcdspace.org
 $\frac{1}{2}$
switches, PI controller is involved to eliminate the possible error between the generated rotor
speed (ω_r) and reference rotor speed ($\omega_{r,\text{ref}}$) as well as generate **SPECT ASSET ASSET ASSET ASSET ASSET ASSET ASSET ASSET ASSET AS SET AN RES** firing switches, PI controller is involved to eliminate the possible error between the generated rotor speed (ω_r) and reference reactive power **roof**
To established the three-phase reference rotor current $(i_{\text{r(abc-ref)}})$ for PWM RSC firing
switches, PI controller is involved to eliminate the possible error between the generated rotor
speed (ω_i) and reference r To established the three-phase reference roto
switches, PI controller is involved to eliminate the
speed (ω_r) and reference rotor speed (ω_{r_ref}) as v
reference reactive power (Q_{s_ref}). In addition, i_{rq_ref} a
via To established the three-phase reference rotor current $(i_{\text{r(abc-rel)}})$ for PWM RSC firing ches, PI controller is involved to eliminate the possible error between the generated rotor of (ω_r) and reflerence rotor speed $(\omega$ To established the three-phase reference rotor current $(i_{\text{r(abc-ref)}})$ for PWM RSC firing switches, PI controller is involved to eliminate the possible error between the generated rotor speed (ω_r) and reference rotor sp To established the three-phase reference rotor current ($i_{\text{r(abc-ref)}}$) for PWM RSC firing
switches, PI controller is involved to eliminate the possible error between the generated rotor
speed (ω_r) and reference rotor s

R@AIKTC
 CHAPTER 6.

SIMULATION RESULT

This section evaluates and discusses about wind interaction point aiktcdspace.org
 SIMULATION RESULT

es and discusses about wind interaction point, control strategy

y state behavior. The control strategy represents results of the FIER 6.
SIMULATION RESULT
This section evaluates and discusses about wind interaction point, control strategy
ormances, and steady state behavior. The control strategy represents results of the
PT control and Back-to-Back aiktedspace.org
 EXPLER 6.

SIMULATION RESULT

This section evaluates and discusses about wind interaction point, control strategy

performances, and steady state behavior. The control strategy represents results of the
 aiktedspace.org
 MAPTER 6.

SIMULATION RESULT

This section evaluates and discusses about wind interaction point, control strategy

performances, and steady state behavior. The control strategy represents results of the
 EXECUTE MANUT SET SET ASSET IS SET ASSET ASSET ASSET THE SET ASSET ON THE SET ASSET OF THE SET AND PRESENT SIMULATION RESULT
This section evaluates and discusses about wind interaction point, control strategy
performance **EXECUT:**

This section evaluates and discusses about wind interaction point, cont

performances, and steady state behavior. The control strategy represents rest

MPPT control and Back-to-Back converter system. The steady **SIMULATION RESULT**

This section evaluates and discusses about wind interaction point, control strategy

performances, and steady state behavior. The control strategy represents results of the

MPPT control and Back-to-B This section evaluates and discusses about wind interaction point, control strategy
performances, and steady state behavior. The control strategy represents results of the
MPPT control and Back-to-Back converter system. T

	voltage magnitude profiles. The simulation is performed using PSCAD/EMTDC. The	
	results obtained are plotted and explained accordingly.	
Sr. No 1.	Parameter Name	Expression $f = 50$
2.	Stator Frequency (Hz)	
	Rated Stator power (W)	$Ps = 2e6$
	Rated rotational speed (rev/min)	$n = 1500$
	Rated stator voltage (V)	$V_s = 690$
	Rated Stator current (A)	$Is = 1760$
6.	Rated Torque (N.m)	$Tem = 12732$
7.	Pole pair	$p = 2$
8.	Stator / Rotor turns ratio	$u = 1/3$
9.	Rated Rotor voltage (Non - reached) (V)	$Vr = 2070$
10.	Maximum slip	smax = $1/3$
11.	Rated rotor voltage referred to stator	Vr stator = $(Vr*smax)*u$
12.	Stator resistance (ohm)	$Rs = 2.6e-3$
13.	Leakage inductance (H)	$\text{Lsi} = 0.087\text{e-}3$
14.	Magnetizing inductance (H)	$Lm = 2.5e-3$
15.	Rotor resistance referred to stator side (ohm)	$Rr = 2.9e-3$
16.	Stator inductance (H)	$Ls = Lm + Lsi$
17.	Rotor inductance (H)	$Lr = Lm + Lsi$
18.	DC bus voltage referred to stator	Vbus = Vr_{stator} *sqrt (2)
19.	Sigma	sigma = $1 - Lm^2/(Ls * Lr)$
20.	Stator flux (Approx.) (Wb)	$Fs = Vs*sqrt(2/3)/(2*pi*f)$
21.	Inertia	$J = 127$
22.	Damping	$D = 1e-3$

IR@AIKTC

PI Regulators used in the simulation are :
 \therefore tau_i = (sigma*Lr)/Rr
 \therefore tau_n = 0.05 IR@AIKTC

PI Regulators used in the simulation are :
 \triangleright tau_i = (sigma*Lr)/Rr
 \triangleright tau_n = 0.05
 \triangleright wni = 100*(1/tau i) IR@AIKTC

PI Regulators used in the simulation are :
 \triangleright tau_i = (sigma*Lr)/Rr
 \triangleright tau_n = 0.05
 \triangleright wni = 100*(1/tau_i)
 \triangleright wnn = 1/tau_n IR@AIKTC

PI Regulators used in the simulation are :
 \triangleright tau_i = (sigma*Lr)/Rr
 \triangleright tau_n = 0.05
 \triangleright wni = 100*(1/tau_i)
 \triangleright wnn = 1/tau_n
 \triangleright kn id = (2*wni*sigma*Lr)-Rr IR@AIKTC

PI Regulators used in the simulation are :
 \triangleright tau_i = (sigma*Lr)/Rr
 \triangleright tau_n = 0.05
 \triangleright wni = 100*(1/tau_i)
 \triangleright wnn = 1/tau_n
 \triangleright kp_id = (2*wni*sigma*Lr)-Rr
 \triangleright kp_id = (2*wni*sigma*Lr PI Regulators used in the simulation are :
 \triangleright tau_i = (sigma*Lr)/Rr
 \triangleright tau_n = 0.05
 \triangleright wni = 100*(1/tau_i)
 \triangleright wnn = 1/tau_n
 \triangleright kp_id = (2*wni*sigma*Lr)-Rr
 \triangleright kp_iq = kp_id
 \triangleright ki id = (wn PI Regulators used in the simulation are :
 \triangleright tau_i = (sigma*Lr)/Rr
 \triangleright tau_n = 0.05
 \triangleright wni = 100*(1/tau_i)
 \triangleright wnn = 1/tau_n
 \triangleright kp_id = (2*wni*sigma*Lr)-Rr
 \triangleright kp_iq = kp_id
 \triangleright ki_id = (wn

-
-
-
-
- kilian = (sigma*Lr)/Rr

kilian = 0.05

kilian = 100*(1/tau_i)

kilian = (2*wni*sigma*Lr)-Rr

kilian = (wni^2)*Lr*sigma

kilian = (wni^2)*Lr*sigma

kilian = (wni^2)*Lr*sigma

kilian = (wni^2)*Lr*sigma

kilian = (2*wni*J)} kilometrian = 0.05

kilometrian = 100*(1/tau_i)

kilometrian = 1/tau_n

kilometrian = 2*wni*sigma*Lr)-Rr

kilometrian = ki > wni = 100*(1/tau_i)

> wnn = 1/tau_n

> kp_id = (2*wni*sigma*Lr)-Rr

> kp_iq = kp_id

> ki_id = (wni^2)*Lr*sigma

> ki_iq = ki_id

> kp_n = (2*wnn*J)p

> ki_n = ((wnn^2)*J)/p

> ki_n = ((wnn^2)*J)/p > wnn = 1/tau_n

> kp_id = (2*wni*sigma*Lr)-Rr

> kp_iq = kp_id

> ki_id = (wni^2)*Lr*sigma

> ki_iq = ki_id

> kp_n = (2*wnn*J)/p

> ki_n = ((wnn^2)*J)/p

//4/

//4

(wh_n = ((wnn^2)*J)/p

(//4/
-
-
-
-
-

CONCLUSION

R@AIKTC
 CHAPTER 7.

CONCLUSION

This project presents a simple concept to harvest high altitude wind ene aiktedspace.org
 This project presents a simple concept to harvest high altitude wind energy using air borne
 This project presents a simple concept to harvest high altitude wind energy using air borne
 This project p example.

Window a sixted space orget a simple concept to harvest high altitude wind energy using air borne

wind generator supported by light gas filled blimp. A blimp is an aerostat that remains stationary

at high altit aiktedspace.org
 CHAPTER 7.

CONCLUSION

This project presents a simple concept to harvest high altitude wind energy using air borne

wind generator supported by light gas filled blimp. A blimp is an acrostat that remain **CHAPTER 7.**
CONCLUSION
This project presents a simple concept to harvest high altitude wind energy using air borne
wind generator supported by light gas filled blimp. A blimp is an acrostat that remains stationary
at high **CONCLUSION**

This project presents a simple concept to harvest high altitude wind energy using air borne

wind generator supported by light gas filled blimp. A blimp is an aerostat that remains stationary

at high altitud **Simple and light weight PEC** is designed which converts generated that emains stationary at high altitude holding an air-borne wind urbine and the electric generator at a particular height.
An electromechanical tether is **CONCLUSION**
This project presents a simple concept to harvest high altitude wind energy using air borne
wind generator supported by light gas filled blimp. A blimp is an aerostat that remains stationary
at high altitude h **EXECTED FORT THE CONTROL**
This project presents a simple concept to harvest high altitude wind energy using air borne
wind generator supported by light gas filled blimp. A blimp is an aerostat that remains stationary
at h This project presents a simple concept to harvest high altitude wind energy using air borne wind generator supported by light gas filled blimp. A blimp is an aerostat that remains stationary at high altitude holding an air wind generator supported by light gas filled blimp. A blimp is an aerostat that remains stationary
at high altitude holding an air-borne wind turbine and the electric generator at a particular height.
An electromechanical at high altitude holding an air-borne wind turbine and the electric generator at a particular height.
An electromechanical tether is used to transmit power to the ground based station. Optimal
transmission DC voltage is de An electromechanical tether is used to transmit power to the ground based station. Optimal transmission DC voltage is determined in order to reduce the overall weight of tether. So, a simple and light weight PEC is designe transmission DC voltage is determined in order to reduce the overall weight of tether. So, a simple and light weight PEC is designed which converts generated low volt-age AC to optimal medium voltage DC for efficient power simple and light weight PEC is designed which converts generated low volt-age AC to optimal
medium voltage DC for efficient power transmission. The designed converter consists of a
rectifier and an isolated DC-DC converter medium voltage DC for efficient power transmission. The designed converter consists of a
rectifier and an isolated DC-DC converter in the air-borne unit and a grid connected PEC in the
ground station. Isolated DC-DC conver rectifier and an isolated DC-DC converter in the air-borne unit and a grid connected PEC in the ground station. Isolated DC-DC converter and ground based PEC are designed and simulated for 100 kW application in the paper. ground station. Isolated DC-DC converter and ground based PEC are designed and simulated for 100 kW application in the paper. Using this concept of harriessing high altitude wind energy; one
grid power supply as well as of both on-grid, off-grid and emergency power requirements.

Moreover \mathbb{R}^n and \mathbb

REFERENCES

- aiktedspace.org

1) J. Sawin, "Renewables global status report," no. REN21.2012, Paris, France, Tech Rep.

2011 and 2012.

2) "G. m. masters, renewable and efficient electric power systems (wiley)," New York, NY, **REFERENCE**

J. Sawin, "Renewables global status report," nc

2011 and 2012.

"G. m. masters, renewable and efficient electric

USA: Wiley 2004. 2)I. Sawin, "Renewables global status report," no. REN21.2012, Paris, France, Tech Rep.
2011 and 2012.
2) "G. m. masters, renewable and efficient electric power systems (wiley)," New York, NY,
2) (2014,Aug.)Umas@ONLINE.[O
-
- TC

USA: Wiley 2004.

USA: Wiley 2004. **REFERENCES**
3) J. Sawin, "Renewables global status report," no. REN21.2012, Paris
3) (3011 and 2012.
3) (30. m. masters, renewable and efficient electric power systems (wile
3) (2014,Aug.)Umas@ONLINE.[Online].Available
3) http://www.umass.edu/windenergy/publications/published/communityWindFactSheets/R **REFERENCES**

J. Sawin, "Renewables global status report," no. REN21.2012, Pa

2011 and 2012.

"G. m. masters, renewable and efficient electric power systems (wi

USA: Wiley 2004.

(2014,Aug.)Umas@ONLINE.[Online].Available HETENDIVERS

1) J. Sawin, "Rencwables global status report," no. REN21.2012, Paris, France, Tech Rep.

2011 and 2012.

2) "G. m. masters, renewable and efficient electric power systems (wiley)," New York, NY,

USA: Wiley J. Sawin, "Renewables global status report," no. REN21.2012,
2011 and 2012.
"G. m. masters, renewable and efficient electric power systems
USA: Wiley 2004.
(2014,Aug.)Umas@ONLINE.[Online].Available
http://www.umass.edu/win 1)Elliot, Dave (2014-04-12). *"Flights of fancy: airborne wind and the Section And 2012.*

2) Clastic Wiley 2004.

2) Clastic Wiley 2004.

2) Clastic Plumas@ONLINE.[Online].Available

2) Clastic Plumas. And Windener "G. m. masters, renewable and efficient electric power systems (wiley), USA: Wiley 2004.

(2014,Aug.)Umas@ONLINE.[Online].Available

http://www.umass.edu/windenergy/publications/published/community Wi

ERL Fact Sheet 2a Ca 1990)USA: Wiley 2004.

3) (2014,Aug.)Umas@ONLINE.[Online].Available

http://www.umass.edu/windenergy/publications/published/communityWindFactSheets/R

ERL Fact Sheet 2a Capacity Factor.pdf

4) M. L. Loyd, "Crosswind kite
-
-
- paywall
- 1) http://www.umass.edu/windenergy/publications/published/communityWindFactSheets/R

FRL Fact Sheet 2a Capacity Factor.pdf

4) M. L. Loyd, "Crosswind kite power," Journal of Energy, vol. 4, no. 3,

ARTICLE NO. 80–4075, 198 ERL Fact Sheet 2a Capacity Factor pdf

M. L. Loyd, "Crosswind kite power," Journal of Energy, vol. 4, no. 3,

ARTICLE NO. 80–4075, 1980

Elliot, Dave (2014-04-12), "*Flights of jancy: airborne wind turbines*". Institute of M. L. Loyd, "Crosswind kite power," Journal of Energy, vol. 4, no. 3,
ARTICLE NO. 80–4075, 1980
Elliot, Dave (2014-04-12). "*Flights of fancy: airborne wind turbines*". Institute of
Physics, Environmental Research Web.
Mic ARTICLENO. 80-4075, 1980
Elliot, Dave (2014-04-12). "*Flights of fancy: airborne wind turbines*". Institute of
Physics, Environmental Research Web.
Michael Specter, "Wind Power Takes Flight", The New Yorker May 20, 2013 b Elliot, Dave (2014-04-12). *"Flights of fancy: airbor*
Physics, Environmental Research Web.
Michael Specter, "Wind Power Takes Flight", The Nev
paywall
Levitan, David (2012-09-24). *"High-Altitude Wind*
Hurdles". Environme **8)**Michael Specter, "Wind Power Takes Flight", The New Yorker May 20, 2013 behind
 8) Levitan, David (2012-09-24). "*High-Attitude Wind Energy*: Huge Potential — and
 Burdles". Environment 360. How do you safely susp paywall
Levitan,David (2012-09-24). "*High-Altitude Wind Energy*: Huge Potential — and
Hurdles". Environment 360. How do you safely suspend airborne turbines hundreds or
thousands of feet off the ground? How do you keep t *1 10) 1 1012 1012-09-24). "High-Altitude Wind Energy: Huge Potential — and Hurdles". Environment 360. How do you safely suspend airborne turbines hundreds or thousands of feet off the ground? How do you keep them* Hurdles". Environment 360. How do you safely suspend airbome turbines hundreds or
thousands of feet off the ground? How do you keep them aloft for long periods of time in
high winds without having to perform frequent, cost ing hay without having to perform frequent, costly maintenance? And what about
interference with aviation?
"Airborne Wind Energy Systems, a review of the technologies, A. cherubini, A. Papini, R.
Vertechy, M.Fontana, Renew
-
-
-
-

IR@AIKTC and the contract of t

aiktcdspace.org
Airborne Wind Turbine," Industrial Electronics (ISIE), 2011 IEEE International
Symposium on , vol., no., pp.32,55, 27-30 June 2011
Khaled Saleh Banawair, "DFIG Wind -Turbine Modelling With reactive power

- aiktcdspace.org

aiktcdspace.org

Airborne Wind Turbine," Industrial Electronics (ISIE), 2011 IEEE Internationa

Symposium on , vol., no., pp.32,55, 27-30 June 2011

Khaled Saleh Banawair, "DFIG Wind -Turbine Modelling Wit aiktedspace.org

2011 Khaled Saleh Banawair, "DFIG Wind -Turbine Modelling With reactive power

2011 22) Khaled Saleh Banawair, "DFIG Wind -Turbine Modelling With reactive power

2014 IEEE International

2014 Conference Po aiktcdspace.org

Airborne Wind Turbine," Industrial Electronics (ISIE), 2011 IEEE International

Symposium on , vol., no., pp.32,55, 27-30 June 2011

Khaled Saleh Banawair, "DFIG Wind -Turbine Modelling With reactive power aiktcdspa

Airborne Wind Turbine," Industrial Electronics (ISIE), 2011 IEEE Inte

Symposium on , vol., no., pp.32,55, 27-30 June 2011

Khaled Saleh Banawair, "DFIG Wind -Turbine Modelling With reactive

conference Power & aiktcdspace.org

aiktcdspace.org

Airborne Wind Turbine," Industrial Electronics (ISIE), 2011 IEEE International

Symposium on , vol., no., pp.32,55, 27-30 June 2011

12) Khaled Saleh Banawair, "DFIG Wind -Turbine Modellin aikted:

aikted:

Airborne Wind Turbine," Industrial Electronics (ISIE), 2011 IEEE Ir

Symposium on , vol., no., pp.32,55, 27-30 June 2011

Khaled Saleh Banawair, "DFIG Wind -Turbine Modelling With reac

control Integrated
-

APPENDIX

-
-
- 1) Wind Power Power obtained by harnessing the energy of the wind.

2) Wind Power Power obtained by harnessing the energy of the wind.

2) Swept Area The swept area is the plane of the wind intersected by the generat 2) APPENDIX
2) Wind Power - Power obtained by harnessing the energy of the wind.
2) Swept Area - The swept area is the plane of the wind intersected by the generator.
3) Blade Solidity - Blade solidity is an important desi 3) Blade Solidity - Blade solidity is an important design parameter for the axial flow impeller andis and the solidity - Blade solidity is an important design parameter for the axial flow impeller andis defined as the rati
- **EXECUTE:**
 EXECUTE:
 EXECUTE ASSEMUATE:
 EXECUTE ASSEMUATE:

Swept Area The swept area is the plane of the wind intersected by the generator.

Blade Solidity Blade solidity is an important design parameter for t aikted space.org

4) For a site of the vind APPENDIX

1) Wind Power - Power obtained by harnessing the energy of the wind.

2) Swept Area - The swept area is the plane of the wind intersected by the generator.

3) Blade So
- **APPENDIX**
Wind Power Power obtained by harnessing the energy of the w
Swept Area The swept area is the plane of the wind intersected
Blade Solidity Blade solidity is an important design parameter
defined as the rati **Solution - Applemation**

5) American - The swept area is the plane of the wind intersected by the generator.

5) Blade Solidity - Blade solidity is an important design parameter for the axial flow impeller and

5) Blade S THETDIAN

Wind Power - Power obtained by harnessing the energy of the wind.

Swept Area - The swept area is the plane of the wind intersected by the generator.

Blade Solidity - Blade solidity is an important design parame
-
- 1) Wind Power Power obtained by harnessing the energy of the wind.

2) Swept Area The swept area is the plane of the wind intersected by the ge

3) Blade Solidity Blade solidity is an important design parameter for t 2) Swept Area - The swept area is the plane of the wind intersected by the generator.

3) Blade Solidity - Blade solidity is an important design parameter for the axial flow impeller andis

4) Fossil - Fueled Generator - G Blade Solidity - Blade solidity is an importan
defined as the ratio of blade chord length to p
Fossil - Fueled Generator - Generators which
movers that run on fossil fuels.
Aesthetic Pollution - Visual pollution is an a
th defined as the ratio of blade chord length to pitch.

4) Fossil - Fueled Generator - Generators which produce electrical energy with the help of prime

movers that run on fossil fuels.

5) Aesthetic Pollution - Visual poll 9) Academies Factor - Capacity factor is the unit less ratio of an actual electrical energy output of a measurement of actual performance of a power to Weight Ratio - Power to weight ratio is a measurement of actual perfor movers that run on fossil fuels.

Aesthetic Pollution - Visual pollution is an aesthetic issue and refers to the impacts of pollution

that impair one's ability to enjoy a vista or view.

Depleting - Diminish in number or
-
-
-
- 10) Solution Visual pollution is an aesthetic issue and refers to the impacts of the thing it cost of the time is a bility to enjoy a vista or view.

10) Depleting Diminish in number or quantity.

10) Power to Weight R 11) The metric of example in the maximum possible state of example and the metric of a power to Weight Ratio - Power to weight ratio is a measurement of actual performance of a power source.

11) Power to Weight Ratio - Po Depleting - Diminish in number or quantity,

Power to Weight Ratio - Power to weight ratio is a measurement of actual performance of

power source.

Buoyancy - The ability or tendency of something to float in water or othe 12) Air - Borne Turbine - An air borne turbine is a concept for a wind turbine resources.

12) Air - An airly or tendency of something to float in water or other fluid or air.

13) Capacity Factor - Capacity factor is the
-
- powersource.

Buoyancy The ability or tendency of something to float i

Capacity Factor Capacity factor is the unit less ratio of a

given period of time to the maximum possible electrical er

Cost of Electricity Co 13) Awes - Among novel technologies for producing electricity from renewable resources, a new class of wind energy output over that period.

13) Capacity Factor - Capacity factor is the unit less ratio of an actual electri CapacityFactor - Capacity factor is the unit less ratio of an actual electrical energy output over a
given period of time to the maximum possible electrical energy cutput over that period.
Cost of Electricity - Cost of pr given period of time to the maximum possible electrical energy output over that period.

Cost of Electricity - Cost of producing 1 KWH of energy.

Power Density - Power density (or volume power density or volume specific p Cost of Electricity - Cost of producing 1 KWH of energy,

Power Density - Power density (or volume power density or volume specific power) is the

amount of power (time rate of energy transfer) per unit volume.

Air - Born turbines. 22) Air - Borne Turbine - An air borne turbine is a concept for a wind turbine with rotor supported

12) Air - Borne Turbine - An air borne turbine is a concept for a wind turbine with rotor supported

13) AWES - Among nov Air - Borne Turbine - An air borne turbine is a concept for a wi
in the air without a tower.
AWES - Among novel technologies for producing electricity fre
class of wind energy converters has been conceived under the n
Syst in the air without a tower.

13) AWES - Among novel technologies for producing electricity from rene

class of wind energy converters has been conceived under the name of

Systems (AWESs). This new generation of systems em
-
-