School of Architecture

School of Engineering & Technology

KALSEKAR TECHNICAL CAMPUS

School of Pharmacy

Knowledge Resource & Relay Centre (KRRC)

ANT STARAING

AIKTC/KRRC/SoET/ACKN/QUES/2018-19/ Date:

School: SoET-CBCS

E FEARNING

Branch: ELECT. ENGG. SEM: III

To, Exam Controller, AIKTC, New Panvel.

Dear Sir/Madam,

Received with thanks the following Semester/Unit Test-I/Unit Test-II (Reg./ATKT) question papers from your exam cell:

Sr.	Subject Name	Subject Code	Format		No. of
No.			SC	HC	Copies
1	Applied Mathematics- III	EEC301		~	02
2	Electronic Devices & Circuits	EEC302		V	(r 7
3	Conventional And Non-Conventional Power Generation	EEC303			
4	Electrical and Electronics Measurement	EEC304		1	02
5	Electrical Machine -1	EEC305		~	02
-			_		
			_		

Note: SC - Softcopy, HC - Hardcopy

(Shaheen Ansari) Librarian, AIKTC

SE-sem-M- Choice Based - Electrical Paper / Subject Code: 51001 / Applied Mathematics-III

8/5/1

(8)

Duration – 3 Hours Total Marks : 80 N.B.:- 1. Question no 1 is compulsory. 2. Attempt any THREE questions out of remaining FIVE questions.

Q.1 a) Find Laplace Transform of the given function $f(t) = e^{-5t} \operatorname{erf}(\sqrt{t})$, (5) b) $\sqrt{\frac{2}{2}} (\cos x - t)$ (5)

- Prove that $J_{-\frac{3}{2}} = -\sqrt{\frac{2}{\pi x}} \left(\frac{\cos x}{x} + \sin x \right)$ (5)
- c) Find complex form of Fourier series of $\cosh 2x + \sinh 2x$; $(-\pi, \pi)$. (5)
- d) Find the Directional derivative of F = x² y² + 2z¹ at P(1,2,3) in the (5) direction of the line PQ where Q is the point (5,0,4). In what direction will it be maximum? What is the magnitude of this maximum?

a) Prove that
$$\nabla \times \left[\frac{a \times r}{r^3}\right] = \frac{-a}{r^3} + \frac{3(a \bullet r)r}{r^5}$$
. (6)

- b) Show that the set of functions $\left\{Sin\left(\frac{\pi x}{2L}\right), Sin\left(\frac{3\pi x}{2L}\right), Sin\left(\frac{5\pi x}{2L}\right), \ldots, \right\}$ forms an orthogonal set over the interval [0, L]. Construct corresponding orthonormal set. (6)
- c) Determine the analytic function f(z) = u + iv if $3u + 2v = y^2 x^2 + 16xy$. (8)
- Q.3 a) Find the Bilinear transformation that maps the points (6) z = 1, i, -1 into $w = 0, 1, \infty$.
 - b) Prove that $\int_{0}^{\infty} \frac{e^{-\sqrt{2}t} \sinh t}{t} dt = \frac{\pi}{8}$ (6)
 - c) Obtain Fourier series of $f(x) = \begin{cases} x + \pi/2 & -\pi \le x \le 0 \\ \pi/2 x & 0 \le x \le \pi \end{cases}$
 - Hence deduce that $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots$
- Q.4 a) Find the Fourier sine transform of e^{-x} , $x \ge 0$, and hence deduce that (6) $\int_0^\infty \frac{x \sin mx}{1+x^2} dx = \frac{\pi}{2} e^{-m}, m \ge 0.$
 - b) Find Inverse Laplace Transform of $\frac{(s+2)^2}{(s^2+4s+8)^2}$ using Convolution theorem. (6)
 - c) Verify Green's theorem for F = (x² xy)i + (x² y²) / and C is the closed curve (8) formed by x² = 2y, x = y.

Page 1 of 2

52D665BA610210D6637CEC2F49D3D087

67563

66

Q.2

Paper / Subject Code: 51001 / Applied Mathematics-III

Q.5 a) Prove that
$$\int f_5(x)dx = -f_4 - \frac{4}{x}f_3(x) - \frac{8}{x^2}f_2(x)$$
. (6)

b) Evaluate $\iint_{x} \overline{F} \cdot \overline{n}dS$ where S is the surface of the region bounded by (6) $x^2 + y^2 = 4, z = 0, z = 3$ and $\widetilde{F} = 4xt - 2y^2 y + z^2 k$. Find inverse Laplace transform of

(i)
$$\log\left(\frac{s^2 + a^2}{(s+b)^2}\right)$$

(ii) $\frac{e^{-2s}}{s^2 + 8s + 25}$ (4)

- Q.6 a) Prove that $\overline{F} = (6xy^2 2z^3)/((6x^2y + 2yz))/((y^2 6z^2x)k)$ is a conservative (6) field. Find the scalar potential for \overline{F} . Hence find the work done in moving a particle from (1,0,2) to (0,1,1)
 - b) Express the function f(x) = -e^{-kx}, for x<0 & f(x) = e^{-kx}, for x > 0 as (6) Fourier integral and hence deduce that ∫₀[∞] w sin w / w² + k² dω = π/2 e^{-kx}, if x > 0, k > 0.

Solve
$$\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} + y = 3te^{-t}$$
, $y(0) = 4$, $y'(0) = 2$ using Laplace Transform (8)

67563

Page 2 of 2

SE-sem-II- choice based-Electrical

Paper / Subject Code: 51002 / Electronics Device and Circuit

Q. P. Code: 23920

(3 Hours)

[Total Marks:80]

- Question No.1 is compulsory. (1)N.B.
 - Attempt any Three from the rest. (2)
 - Figure to right indicate full Marks. (3)
 - Assume the suitable data if it is necessary. (4)
 - Answer any Four of the following.

a)	Justify Zener diode can be used as a voltage regulator.	5M
b)	Explain Barkhausen criterion for sustained oscillations.	5M
(c)	Explain different types of coupling,	5M
d)	Explain thermal runaway and stabilization in BJT.	5M
(e)	Explain the effect of negative feedback on bandwidth and overall gain.	5M
ě.,	to a finite time of full and bridge eactifier with CLC filter. Explain its	10M

- Draw circuit diagram of full wave bridge rectifier with CLC filter. E (a) working with neat sketches and Derive expression for ripple factor. 10M
 - What are the types of MOSFET? Explain their construction and working. (b)
- In a circuit shown in Fig.1 determine Ico and VCEQ. Draw the DC load line on 10M (a) Q.3 output characteristics and show the location of Q-point. Comment on the region of operation.

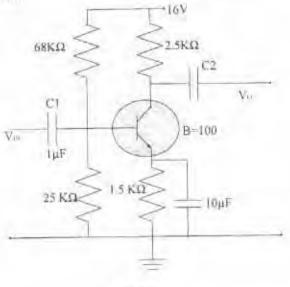
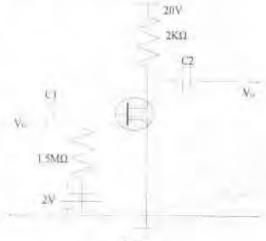


Fig.1

Draw circuit diagram of RC phase shift oscillator. Derive an expression for its 10M (b) frequency of oscillation.

Page 1 of 2

5E3DE25E6A27B8E7164E07E605469BBF


Q.1

0.2

Paper / Subject Code: 51002 / Electronics Device and Circuit

Q. P. Code: 23920

- Q.4 (a) Derive expression for voltage gain, output impedance and input impedance of 10M common source JFET amplifier.
 - (b) Explain the working of CE amplifier with its frequency response. 10M
- Q.5 (a) For the Common Source amplifier using fixed bias configuration as shown in 10M Fig.2, the Q point is defined as $I_{DQ} = 6$ mA and $V_{GSQ} = -2$ V. The values of I_{DSS} and V_P are 10 mA and -7 V respectively. The value of $Y_{OS} = 40 \ \mu$ S. Calculate (a) g_m (b) r_d (c) Z_i (d) Z_n (e) Av

(b) (c)	Compare different biasing methods of JFET. Compare the different negative feedback amplifiers.	5M 5M
	Answer any Two of the following.	
(#)	Write short note on H-parameter model. Derive the necessary expression for Ay, Z., Z.,	10M
(b)	What is Darlington configuration? Derive the expression of voltage gain for Darlington pair emitter follower.	10M
(c)	Draw neat diagram of UJT relaxation oscillation. Explain its operation. Derive the expression for frequency of output signal. Draw various waveforms	10M

Page 2 of 2

5E3DE25E6A27B8E7164F07E605469BBF

Q.6

SE-Sem-III - Choice based - Electrical

Paper / Subject Code: 51004 / Electrial and Electronics Measurement

Q.P. Code: 27111

24/5/19

20

Total Marks assigned to the paper- 80

N.B.:- (1) Question No.1 is compulsory

Duration - 3 Hours

- (2) Attempt any three questions out of remaining five questions.
- (3) Assume suitable data if necessary and justify the same.
- Q 1. Answer the following questions
 - a) Write the difference between attraction and repulsion type moving iron instrument.
 - b) Write about piezoelectric transducer
 - c) Explain a De Sauty's bridge to measure the capacitance of capacitor.
 - d) Define various types of errors in measuring instrument.
- Q 2 a) Discuss the construction and working of moving coll instrument and derive the 10 equation of torque.
- Q 2 b) Explain the construction and working of single phase electrodynamometer type 10 power factor meter.

1	Q 3 a)	Explain how D.C. potentiometer is used to calibrate the ammeter, voltmeter and	10
i,	Q 3 b)	wattmeter. Explain the construction and working principle of thermistor.	10
	Q4a) Q4b)	Draw and explain working of successive approximation type digital voltmeter Explain the different types of torques required for operation of any indicating instruments.	10 10
	Q 5 a) Q 5 b)	Explain how Hay's bridge can be used to measure value of unknown inductor. Explain the construction and working of Schering's bridge	10 10
	Q6a) Q6b)	Explain the construction and working of Thermocouple. Write short note on Ballistic galvanometer.	10 10

AC31A4B895B758FBB750071CA062E7E5

SE - Sem - II - Electrical - choir Based Paper / Subject Code: 51005 / Electrical Machine-1

30/5/19

Duration: 3 Hours

Marks :- 80

Please check whether you have got the right question paper.

1	N.B.:	 Question 1. Is compulsory. Solve any three out of remaining question. Assume suitable data if necessary. 	
Q.1	a)	Explain the use of commutator in DC motor.	05
	b)	Explain Armature Reaction in DC machine.	05
	c)	Explain difference Electric Circuit and develop circuit.	05
	d)	Electromechanical energy conversion device:	05
	e)	Write the Applications of stepper motor.	
Q.2	a)	Explain the concept of singly excited machines and derive the expression for the electromagnetic torque.	10
	6}		10
Q.3		A 230 V shunt motor running on no load and at normal speed takes an armature current of 2.5 Amp from 230V supply mains. The field circuit resistance is 230 Ω and the armature circuit resistance is 0.3 Ω . Calculate the motor output and efficiency when total current taken from the mains is 35 Amp. If the motor is used as a 230v shunt generator. Find the efficiency and the input power for an output current of 35 Amp.	
	b)	Write the short notes on Doubly excited magnetic field.	10
Q.4	n)	Explain the construction and working of permanent magnet stepper motor.	10
	b)	With the help of neat circuit diagram explain the swinburns Test.	10
Q.5	a)	Explain methods of speed control of DC motor.	10
	b)	The Hopkinson's test on two shunt machinery gave the following result for full load. Line voltage = 250V, current taken from supply system excluding field current = 50A, motor. Armature current = 380A, field currents = 5A and 4.2 A, calculate the efficiency of the machine working as a generator. Armature Resistance of each m/c is 0.02Ω .	10
Q.6		Explain four point starter.	10
	10	Write down the applications of DC shunt and series motor.	10

ETAFBC1130975C09AEED1E67A5BB27AD