

School of Engineering & Technology

KALSEKAR TECHNICAL CAMPUS

School of Pharmacy

Knowledge Resource & Relay Centre (KRRC)

School: SoET-CBSGS	Branch:	DI POR ENGO		
	manen.	ELECT. ENGG.	SEM:	<u>v</u>
To, Exam Controller,				
AIKTC, New Panvel.				

Received with thanks the following Semester/Unit Test-I/Unit Test-II (Reg./ATKT) question papers from your exam cell:

Sr.	Subject Name	Subject Code	Format		No. of
No.			SC	HC	Copies
1	Protection & Switch Gear Engg.	EEC501			
2	Electrical Machine – II	EEC502		V	02
3	Electromagnetic Fields & Waves	EEC503		V	02
4	Power Electronics	EEC504		V	02
5	Communication Engg,	EEC505		V	02
6					

Note: SC - Softcopy, HC - Hardcopy

(Shaheen Ansari) Librarian, AIKTC

2

TE. Sem - D - CBSGS - Electrical Paper / Subject Code: 30402 / ELECTRICAL MACHINE II

15/1/19

Time: 3 Hours

Total Marks: 80

Note-

- a) Question No. 1 is compulsory
- b) Attempt any 3 question remaining five
- c) Assume Suitable Data If Required

Q1.Attempt any four each question Carry Equal Marks

(20)

- Explain the need of parallel operation of transformer and write the necessary condition for parallel operation of 3 phase transformer
- b) Explain Double revolving field theory.
- c) Draw and Explain connection and phasor diagram of Dy 11 and Yy6.
- d) Explain Cogging And Crawling Phenomenon In 3 Phase Induction Motor.
- e) Explain similarity between three phase transformers and induction Why induction motor is called generalized transformer
- Q2, a) Explain Oscillating neutral phenomenon in three phase transformers. Remedies to overcome this phenomenon (10)
- b) A 500-kVA transformer with 0.012 PU resistance and 0.06PU reactance, is connected in parallel with a 250-kVA transformer with 0.014 PU resistance and 0.045 PU reactance to share a load of 600 kVA at 0.8 power factor lagging. Find the KVA and power factor shared by each transformer. Do write the necessary formula utilized to solve the numerical. (10)
- Q3.a) Draw and explain working of star-delta starter for three phase induction motor also derive expression for starting current and starting torque.

 (10)
- b) A 3 phase star connected 400V. 50 Hz, 4 pole induction motor has the following per phase constant referred to stator R1 = 0.15, X1=0.45, R2=0.12 X2=0.45 Xm=28.5 Fixed losses (core and friction and windage losses) =400w. Calculate stator current, rotor speed, output torque and efficiency when motor is operated at rated voltage and frequency at a slip of 4%.
- Q4.a) Discuss V/F speed control method of three phase induction motor (10)
- b). Draw and Write all the steps and draw circle diagram. Take suitable example to draw circle diagram.
- Q5. a) Draw and explain power stage of 3 phase induction motor and drive the equation for output power. (10)
- b) Draw and explain the working of capacitor start capacitor run induction motor along with application.

Q6.Short notes(attempt any 2)

(20)

- a) Induction Generator
- b) Switching in transient phenomenon
- c) Scott connection

69339 Page 1 of 1

9/5/19

[Time: 3 Hours]

[Marks:80]

Please check whether you have got the right question paper.

N.B

- 1. Question No.1 is compulsory.
- 2. Answer any three from the remaining five questions.
- 3. Figures to the right indicate full marks.

Q.f Solve any four:-

(20)

- a) Find a unit vector in cylindrical coordinates pointing from a point in xy plane to α point Q (0,0,z).
- b) State and explain Ampere's circuital law.
- c) Derive dielectric -dielectric boundary condition.
- d) What is Lorents force equation for a moving charge?
- e) What do you mean by irrotational and solenoidal fields?

0.2

(20)

- a) A total charge of (40/3) nC is uniformly distributed around a circular ring of radius 2m. Find the potential at a point on the axis 5m from the plane of the ring.
- b) Point charges Q1 = 300μC located at (1,-1,-3) m experiences a force F

 ₁=8α

 _x-8 α

 _x+4α

 _x N due to point charge Q2at (3,-3,-2) m. Determine Q2.

0.3

(20)

- a) Derive an electric field intensity due to infinite line charge.
- b) Given that $\overline{D} = \frac{5r^2}{4\overline{\alpha_r}}$ in spherical coordinates, evaluate both sides of the divergence theorem for the volume enclosed between r=1 and r=2.

0.4

(20)

- a) In a cylindrical conductor of redius 2mm, the current density varies with distance from the axis according to $J = 10^3 400 \rho (A/m^2)$. Find the total current.
- b) V = 0volts for r=0.1m and V = 100volts for r = 2m in spherical co-ordinates assuming free space between the concentric spherical shells. Find E and D using Laplace's equation.

Q.5

(20)

- a) Derive magnetic field intensity due to infinite wire carrying a current I.
 - b) Given $\bar{E} = E_0 z^2 e^{-t} \bar{a}_x$ in free space .Determine if there exists a magnetic field such that both Faraday's law and ampere's circuital law are satisfied simultaneously.

0.6

(20)

- a) Derive the wave equation for electric field and magnetic field in free space.
- b) Calculate the intrinsic impedance propagation constant and the wave velocity for a conducting medium in which $\sigma = 58 \frac{Ms}{m}$, $\mu_r = 1$, at a frequency f=100MHz

........

TE-Sem-V- CBGS- Elochical

31/5/19

Paper / Subject Code: 30405 / POWER ELECTRONICS

		(Time: 3 Hours) [Total Marks: 80]	
N.B	(2) Question No. I is compulsory.) Answer any three from the remaining five questions.) Assume suitable data if necessary and justify the same.) Figures to the right indicate the marks.	
1,	(b) (c)	What is DC-DC converter? List few applications of it. Briefly explain Latching current and Holding current. Two transmitter analogy of SCR. Once SCR is triggered gate loses its control. Why?	5 5 5 5
2.	(a) (b)	Define and explain any two communication circuits of SCR. Explain the operation of a single phase full wave rectifier with RL load for continuous and discontinuous load.	[10] [10]
3,	(a)	Draw a neat circuit and explain the working of full wave fully controlled 3phase bridge circuit with resistive load. Draw the corresponding input and output voltage waveforms.	[10]
	(b)	Explain with circuit diagram and waveform of 1- phase dual converter.	[10]
4.	(a)	Draw and Explain 3 phase inverter where 3 switches conduct together also do the calculation of output voltage.	[10]
	(b)	Define and explain a 1-phase Inverter with RL Load along with output voltage and output current wave forms and also obtained the expression.	[10]
5.	(a)	Explain the step down chopper with and without CCM Mode.	[10]
	(b)	A BOOST Converter has input voltage 6V. The average output voltage E_0 =18 V and the average load current I_0 =0.4A. The switching frequency is 20 kHz of L=250 μ H and C=420 μ F. Determine: (a) the duty cycle \propto , (b) the ripple current of inductor, ΔI_c (c) the peak current of inductor, I_2 , and (d) the ripple voltage of filter capacitor, ΔV_c .	410]
6.	(a)	Explain in detail with circuit diagram and waveforms, single phase step down cycloconverter.	[10]
	(b)	Explain the principle of ON OFF control of AC voltage controller.	[10]

TE-sem-J- CBSAS- Electrical

Paper / Subject Code: 30404 / COMMUNICATION ENGINEERING

27/5/1

Q.P.Code: 39123

(3 Hours)

[Total Marks: 80]

N.B: (1) Question No.1 is compulsory.

- (2) Answer any three from remaining five questions.
- (3) Figures to the right indicate full marks.
- (4) Assume the data if it is necessary.
- (a) Draw and explain the block diagram of Digital communication system.

[20]

- (b) Explain with block diagram Power Line Carrier Communication,
- (c) Explain Nyquist criteria for sampling theorem
- (d) Explain how Power and Bandwidth saving is achieved using SSB system.
- For a systematic linear block code, the three parity check digits C₄,C₅ and C₆ are given by:

 $C_4 = d_1 \oplus d_2 \oplus d_3$

 $C_5 = d_1 \oplus d_2$

 $C_6 = d_1 \oplus d_3$

(a) Construct generator matrix.

- (b) Construct all possible codes generated by this matrix.
- (c) Determine the error correcting capability.
- (d) Prepare a suitable decoding table and Decode the received words 101100 and 000110. [10]
- (b) Derive AM wave equation and also explain a method for SSB generation of AM. [10]
- 3. (a) What is quantization and quantization noise.

[10]

(b)Compute Huffman code and calculate code efficiency for the following.

[10]

Symbol	SO	SI	S2	S3	S4	85	S6-
Probabilities	0.25	0.25	0.125	0.125	0.125	0.0625	0.0625

- (a) Explain the functioning of Foster-Seeley Discriminator for FM detection with neat circuit diagram and phase diagrams. [10]
 - (b) Explain regarding DPSK (i) Transmission (ii) Reception (iii) waveform for data bit sequence
 (c) = 1011001
- (a) The Generator Polynomial of a (7,4) cyclic code is X³+X+1.
 - (i) Implement the Encoder.
 - (ii) Using the Encoder determine the codeword for D = 0011

1051

(b) Explain the need for channel coding and state various types of channel coding.

1051

- (c) The Antenna current of an AM Transmitter is 10 Amps when it is modulated to a depth of 30% by an audio signal. It increases to 11 Amps when another signal modulates the carrier. What is modulation index due to second wave.
- Write short notes on (any two)

[20]

- (a) Fourier Transform and its properties.
- (c) Convolution codes.
- (d) Delta modulation