School of Architecture

School of Engineering & Technology

KALSEKAR TECHNICAL CAMPUS

SNO MARY LOVERNO

TRACHING

LN N

School of Pharmacy

Knowledge Resource & Relay Centre (KRRC)

AIKTC/KRRC/SoET/ACKN	Date:			
School: SoET-CBSGS	Branch: _	EXTC ENGG.	SEM:	m

To, Exam Controller, AIKTC, New Panvel.

Dear Sir/Madam,

Received with thanks the following Semester/Unit Test-I/Unit Test-II (Reg./ATKT) question papers from your exam cell:

Sr.	Subject Name	Subject Code	Format		No. of	
No.			SC HC		Copies	
1	Applied Mathematics- III	ETS301		1	02	
2	Analog Electronics - 1	ETC302				
3	Digital Electonics	ETC303				
4	Circuits & Transmission Lines	ETC304		1	02	
5	Electronics Instruments & Measurement	ETC305				
4						
	and the state of the second					

Note: SC - Softcopy, HC - Hardcopy

(Shaheen Ansari) Librarian, AIKTC 3= -1 = 10-111 - LB245- EXIL-ELECTOCAY

Paper / Subject Code: 49602 / APPLIED MATHEMATICS-III

Q.P. Code: 37077

41

19

		(3 Hours) [Total marks :	80
Note	14	 Question number 1 is compulsory. Attempt any three questions from the remaining five questions. Figures to the right indicate full marks. 	
Q.)	a)	Find the Laplace transform of $sinh^5 t$.	0
	b)	Find an analytic function whose imaginary part is $e^{-x}(y \cos y - x \sin y)$,	0.
	c)	Find the Fourier series for $f(x) = 1 - x^2$ in $(-1, 1)$.	0
	d)	Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ where $\vec{F} = 2x i + (xz - y) j + 2z k$ from $O(0, 0, 0)$ to $P(3, 1, 2)$ along the line OP .	0.
Q.2	a)	Find a cosine series of period 2π to represent sin x in $0 \le x \le \pi$.	0
	b)	Find a, b, c if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational.	0
	c)	Find the image of the circle $ z = k$ where k is real under the bilinear transformation $w = \frac{5-4z}{4z-3}$.	0
Q. 3	a)	Prove that $\int_{\frac{1}{2}}^{1}(x) = \tan x - \int_{-\frac{1}{2}}^{1}(x)$.	0
	b)	Find the inverse Laplace transform of the following function by convolution theorem $\frac{(s+2)^2}{(s^2+4s+8)^2}$	0
	c)	Obtain the complex form of Fourier series for $f(x) = e^{ax}$ in $(-l, l)$ where a is not an integer.	0
Q.4	n)	Find the angle between the normals to the surface $xy = z^2$ at the points (1, 4, 2) and (-3, -3, 3).	0
	b)	Prove that $x^{2} f_{n}^{\prime\prime}(x) = (n^{2} - n - x^{2}) f_{n}(x) + x f_{n+1}(x);$ n = 0, 1, 2,,	0

Page 1 of 2

5E3DE25E6A27B8E7164E07E60585B10D

Paper / Subject Code: 49602 / APPLIED MATHEMATICS-III

Q.P. Code : 37077

	(i)	Find the Laplace transform of sinhat sin at.	04
	(11)	Find the Laplace transform of $te^{-4t} \sin 3t$.	04
Q.5	n)	Prove that $J_2(x) = J''_0(x) - \frac{J_0'(x)}{x}$.	06
	b)	If $v = e^x \sin y$, show that v is harmonic and find the corresponding analytic function.	06
	¢)	Find the Fourier series for $f(x)$ in $(0, 2\pi)$, $f(x) = \begin{cases} x, & 0 < x \le \pi \\ 2\pi - x, & \pi \le x < 2\pi \end{cases}$	08
		Hence, deduce that $\frac{\pi^4}{96} = \frac{1}{1^3} + \frac{1}{3^4} + \frac{1}{3^4} + \dots$	
Q. 6	a).	Show that the set of functions $\cos nx$, $n = 1, 2, 3, \dots$ is orthogonal on $(0, 2\pi)$.	06
	ь)	Using Green's theorem evaluate $\int_C \vec{F} \cdot d\vec{r}$ where C is the curve enclosing the region bounded by $y^2 = 4ax$, $x = a$ in the plane $z = 0$ and	06
		$\overline{F} = (2x^2y + 3z^2)i + (x^2 + 4yz)j + (2y^2 + 6xz)k.$	
	c)	Use Laplace transform to solve	08
		$\frac{d^3y}{dt^4} + 4\frac{dy}{dt} + 8y = 1 \text{ with } y(0) = 0, y'(0) = 1.$	

TE - sem- 11 - CBSGS - EXTL

Time: 3 Hours

Total Marks: 80

05

N.B.

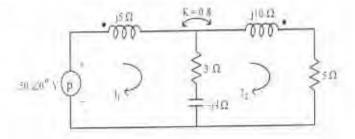
1) Question No. 1 is Compulsory

2) Out of remaining questions, attempt any three

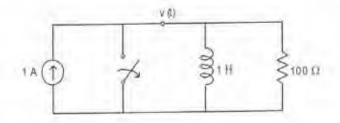
3) Assume suitable data if required

4) Figures to the right indicate full marks

I (A) Draw equivalent circuit for given magnetically coupled circuit.



(B) In the network shown in Fig., at t = 0, switch is opened. Calculate v. $\frac{dv}{dt}$ at t = 0.5



(C) The Z parameters of a 2 port network are, $Z_{11} = 20 \Omega$, $Z_{22} = 30 \Omega$, $Z_{13} = Z_{21} = -05$ 10 Ω . Find Y parameters.

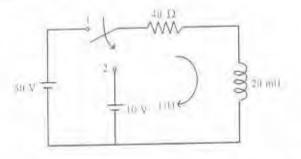
(D) Two two port networks are connected in parallel. Prove that the sum of the 05 corresponding individual parameters is equal to the overall y parameters.

Page 1 of 4

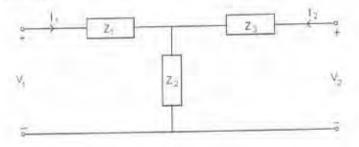
85A55AA012BBCD63B826DI/55CD870867

71738

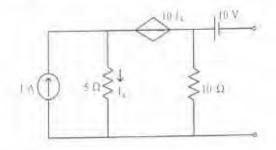
2 (A) The network of Fig. is under steady state with switch at position 1. At t = 0, 10 switch is moved to position 2. Find i (t).



(B) The Z-parameters of a two port are : $Z_{11} = 20 \Omega$, $Z_{12} = Z_{21} = 10 \Omega$, $Z_{22} = 30 \Omega$. 10 Find equivalent T-network.



3 (A) Determine Thevenin's equivalent network for the Fig. shown.



- (B) The parameters of a transmission lines are R = 65Ω/km, L=1.6mH/km, G = 2.25 10 mmho/km, C=0 1µF/km, Find
 - i) Characteristic Impedance

Page 2 of 4

85A55AA012IIRCD63B826DE55CD870867

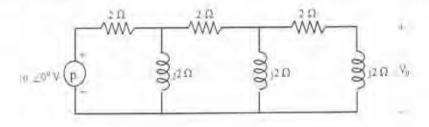
71738

10

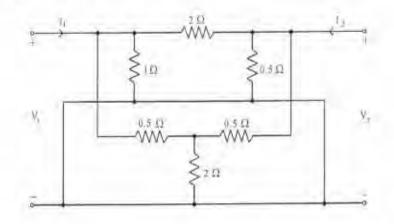
ii) Propagation Constant

iii) Attenuation Constant

- iv) Phase Constant at 1 kHz
- Determine whether following functions are positive real 4 (A)
 - $\frac{s^4 + 2s^3 + 3s^2 + 1}{s^4 + s^3 + 3s^2 + 2s + 1}$ i) $\frac{s^2 + 2s}{s^2 + 1}$
 - (i)
 - (B) In the network of Fig. find V_b.



Find Y-parameters for the network shown in Fig 5 (A)



Realize the following functions in Foster I and Foster II form (B).

$$F(s) = \frac{4(s+1)(s+3)}{(s+2)(s+6)}$$

Page 3 of 4

85A55AA012BBCD63B826DE55CD870867

71738

10

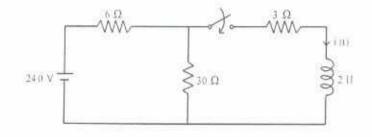
10

10

10

1.10

- 6 (A) A transmission line has a characteristics impedance of 50 ohm and terminate 10 in a load Z₁ = 25 + j50 ohm. Use smith chart and Find VSWR and Reflection coefficient at the load.
 - (B) The switch in Fig. is open for a long time and closes at t = 0. Determine i (t) 10 for t > 0.



71738

Page 4 of 4

85A55AA012BBCD63B826DE55CD870867

32-3417-111- LASAS- EXIL-ELEMACA

Paper / Subject Code: 49602 / APPLIED MATHEMATICS-III

l

(

Q.P. Code : 37077

10

		(3 Hours) [Total marks	: 80
Note	1-	 Question number 1 is compulsory. Attempt any three questions from the remaining five questions. Figures to the right indicate full marks. 	
Q.1	a)	Find the Laplace transform of $sinh^5 t$.	05
	b)	Find an analytic function whose imaginary part is $e^{-x}(y \cos y - x \sin y)$.	05
	C)	Find the Fourier series for $f(x) = 1 - x^2$ in $(-1, 1)$.	05
	d)	Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ where $\vec{F} = 2x i + (xz - y) j + 2z k$ from $O(0, 0, 0)$ to $P(3, 1, 2)$ along the line OP .	05
Q.2	a)	Find a cosine series of period 2π to represent sin x in $0 \le x \le \pi$.	06
	b)	Find a, b, c if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational.	06
	c)	Find the image of the circle $ z = k$ where k is real under the bilinear transformation $w = \frac{5-4z}{4z-3}$.	08
Q. 3	a)	Prove that $\int_{\frac{1}{2}}(x) = \tan x \cdot \int_{\frac{1}{2}}(x)$.	06
	b)	Find the inverse Laplace transform of the following function by convolution theorem $\frac{(s+2)^2}{(s^2+4s+8)^2}$	06
	c)	Obtain the complex form of Fourier series for $f(x) = e^{ax}$ in $(-l, l)$ where a is not an integer.	08
Q.4	a)	Find the angle between the normals to the surface $xy = z^2$ at the points (1, 4, 2) and (-3, -3, 3).	06
	b)	Prove that $x^2 J_n''(x) = (n^2 - n - x^2) J_n(x) + x J_{n+1}(x);$ $n = 0, 1, 2, \dots$	06

Page 1 of 2

5E3DE25E6A27B8E7164E07E60585B10D

Paper / Subject Code: 49602 / APPLIED MATHEMATICS-III

Q.P. Code: 37077

(

	e) (i)	Find the Laplace transform of sinhat sin at.	04
	(ii)		04
Q.5	a)	Prove that $J_2(x) = {f''}_0(x) - \frac{{f_0}'(x)}{x}$.	06
	b)	If $v = e^v \sin y'$, show that v is harmonic and find the corresponding analytic function.	06
	c)	Find the Fourier series for $f(x)$ in $(0, 2\pi)$, $f(x) = \begin{cases} x, & 0 < x \le \pi \\ 2\pi - x, & \pi \le x < 2\pi \end{cases}$ Hence, deduce that $\frac{\pi^4}{a_0} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots$	08
Q. 6	8)	Show that the set of functions $\cos nx$, $n = 1, 2, 3, \dots$ is orthogonal on $(0, 2\pi)$.	00
	b)	Using Green's theorem evaluate $\int_C \vec{F} \cdot d\vec{r}$ where C is the curve enclosing the region bounded by $y^2 = 4ax$, $x = a$ in the plane $z = 0$ and $\vec{F} = (2x^2y + 3z^2)i + (x^2 + 4yz)j + (2y^2 + 6xz)k$.	06
	¢)	Use Laplace transform to solve	08
		$\frac{d^2y}{dy^2} + 4\frac{dy}{dt} + 8y = 1 \text{ with } y(0) = 0, y'(0) = 1_{-}$	

5E3DE2SE6A27B8E7164E07F60585B10D