	School of Architecture
	School of Engineering & Technology
ANTC KALSEKAR TECHNICAL CAMPUS	School of Pharmacy
Knowledge Resource & Re	elay Centre (KRRC)
AIKTC/KRRC/SoET/ACKN/QUES/2018-19/	Date:
School: SoET-CBSGS Branch: EX	TC SEM: VII

To, Exam Controller, AIKTC, New Panvel.

Dear Sir/Madam,

_

Received with thanks the following Semester/Unit Test-I/Unit Test-II (Reg./ATKT) question papers from your exam cell:

Sr.	Subject Name	Subject Code	Format		No. of	
No.			SC	HC	Copies	
L	Image and Video Processing	ETC701		~	02	
2	Mobile Communication	ETC702		V	02	
3	Optical Communication and Networks	ETC703		1	02	
4	Microwave and Radar Engineering	ETC704		V	02	
5	Elective	ETE70X				
6						

Note: SC - Softcopy, HC - Hardcopy

(Shaheen Ansari) Librarian, AIKTC

BE-Sem-VII- OBS4S-EXTC

Paper / Subject Code: 42401 / Image & Video Processing

Time: 3 Hrs

Instructions

Total marks: 80

2/571g

- L QI is compulsory
- 2. Solve any three from remaining
- 3. Assume suitable data if necessary

Q1 Answer the following

- 1. Image resulting from poor illumination could be difficult to segment. State true or false, Justify your answer
- 2. For given figure, Improve and reduce the spatial resolution, consider W= White line, 4MB = Black line, Size of each white and black line is 0.1 mm, total length is 1 mm

24 6	the second the second resigning is i	THEFT	4M
0.1mm		trans.	4141
	6.1 mm		

0.1	10.7	L	1			-			
N	В	W	В	W	B	W	в	w	B

3. Two images have same histogram which of the following properties must they have in common 1) same total power 2)same entropy 3) same inter pixel covariance function Justify your answer

+	Compare 2-D motion and optical flow	4M
5.	Draw and explain the model of image degradation/restoration process	-1M
2	and a set of mage degradation/restoration process	4M

QZ.

1. For given image find and equalize histogram

1	2	3	4
5	5	6	6
6	7	6	Б
6	7	2	3

2. Explain 1) Contrast stretching 2) Log Transformation with neat diagrams

3. Prove Periodicity and symmetry properties of DFT 6M 6M 03

1 Apply 1) Averaging filter 2) Median filter on following image, Use pixel replication for padding. No marks if procedure not followed

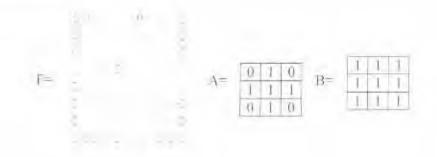
4	8	9
12	15	18
30	32	46

58574

8M

8M

- 2. Explain 1) Sharpening using 2nd order derivative 2) Unsharp masking and high boost 8M filtering
- 3. Let V = {0,1}. Compute 1) Euclidean distance 2) City block distance 3) Chess board distance between pixels p and q +M


0	T.	1	1
1	0	0	1 (q)
Ĩ.	1	1	1
1 (p)	1	1	1

04

- 1 Draw PDF and write equation for following noise models a. Gaussian Noise b. Rayleigh noise c. Erlang noise
- 2 Apply bit plane slicing on following image

5	7	5
4	6	3
1	3	2

3. Find the border for image F given below using two different structural elements. A and B respectively 10M

58574

EE73D3686A12H3777A2C06F08D7E0188

6M

Paper / Subject Code: 42401 / Image & Video Processing

1. 2. 3.	Classify video frames? What Which are the digital quality r Find DCT of given image by t	6M 6M 8M					
		4	2	2	1	1	
		2	5	8	9		
		2	4	5	2		
		2	3	2	2		

Q6

10	Explain motion estimation criterion based on optical flow equation	IOM
2,	Write Short Notes on any two	1.000
	1. Exhaustive block matching algorithms	10M
	2. Binary Feature Matching	
	3. Motion Representation	

58574

1

13E- sem-VII - CBSGS - FXIC

13/5/19

Paper / Subject Code: 42402 / Mobile Communication

(3 Hours)

[Total Marks: 80]

	N.B.:	 Question no 1 is compulsory Solve any three from remaining five Assume suitable data if required. Figures to the right indicate full marks. Draw neat diagrams wherever required. 	
1	(a)	What is timing advance in GSM? Explain Foliage loss in propagation.	05 05
	(b) (c)	What is cell dragging and dwell time?	05
	(d)	How handoffs are prioritized	05
2,		If bw=1.25MHz, R=9600 bps and minimum acceptable E_b/N_0 is found to be 10 dB determine the maximum no of users that can be supported in a single- cell CDMA system using a) omnidirectional base station antennas and no voice activity detection and b) 3 sectors at base station and activity detection with α =3/8 assume the system is interference limited.	10
	(b)	Draw and explain 3GPP architecture	10
3	(a)	Draw and explain Signaling architecture of GSM	10
	(b)	What is the concept of software Defined Radio	10
4	(a)	Classify small scale failing based on Multipath Time Delay Spread and Doppler spread and explain in brief each type.	10
	(b)	Explain Block Call delayed and Block Call cleared System	10
5	(a)	Draw reference architecture of GPRS and explain role of SGSN and GGSN	10
	(b)	Draw and explain IMT 2000 architecture	10
6.		Write short note on (any two) a) MIMO technique in LTE	

b) Rake Receiver

c) Power control in CDMA 2000 and WCDMA

67375

B914FA559D2C0C69BCB7C6B60AA330B0

$BE - sem - \sqrt{D} - CBSGS - ENTC$ Paper / Subject Code: 42403 / Optical Communication and Networks

17/5/19

	(3 Hours)	Total Marks: 80]
N.B.	 Question No.1 is compulsory Attempt any three questions from remaining questions. Figures to right indicate full marks 	
().	 a) Explain the advantages and disadvantages of SONET/SDH b) Compare Linear and Nonlinear Scattering c) What is the Numerical Aperture of Fiber? Give its significance d) What is Optical Circulator? Give its applications. 	05 05 05 05
2.	a) Explain in brief intermodal and intramodal dispersion in fiber	10
	 b) A 6Km optical link consist of multimode step index fiber with a condex of 1.5 and relative refractive index difference of 1%. Estimation (i) Delay difference between slowest and fastest modes at the fiber (ii) RMS pulse spreading due to intermodal dispersion on the link. (iii) Maximum bit rate that may be obtained without substantial er assuming only intermodal dispersion (iv) Bandwidth Length product corresponding to (iii) 	ate r output
3,	 a) What are the different fiber fabrication methods? Explain double of fiber fabrication. 	crucible method 10
	b) What is optical amplifier? Compare different types of optical amp	difiers 10
4.	 a) Explain in detail working principle of PIN photodetector. Explain and demerits 	its merits 10
	b) What is OTN? Draw and explain its frame structure	10
5,	a) What are the advantages of OTDM? Explain its working principle	10
	b) Discuss the term power penalty with suitable system model	10
6.	Write short notes on any two	20
	 a) Passive optical Network b) Dispersion compensation c) Performance and fault management in optical network d) Optical safety 	

006FBA1142B8E6298C01453C50441182

BE-Sem-VII - CBSGS- EXTC Paper / Subject Code: 42404 / Microwave & Radar Engineering

23/5/19

(3 Hours)

Max Marks: 80

2, Out	stion No. 1 is compulsory. of remaining questions, attempt any three questions. ume suitable additional data if required. tres in brackets on the right hand side indicate full marks.	
Q.1 (a) (b) (c) (d)	What factors limit transistor use at microwave frequencies.	[5] [5] [5] [5]
Q:2 (a) (b)	Explain how avalanche devices operate. Name three devices that use the avalanche mode for their operation. Design single-stub (short circuit) shunt tuning networks to match a load impedance $Z_1 = 60 - j80 \Omega$, to a 50 Ω line. Assuming that the load is matched at 2 GHz	[10] [10]
Q.3 (a) (b)	Explain the working of a negative resistance parametric amplifier, Explain the concept of velocity modulation. Also explain the working of cylindrical magnetron.	[10] [10]
Q.4 (a) (b)	Derive equation for phase velocity, cutoff frequency, cutoff wavelength and field equations for rectangular waveguide. Explain how avalanche devices operate. Name three devices that use the avalanche mode for their operation.	
Q.5 (a) (b)	Derive the Radar range equation as governed by minimum detectable signal and noise ratio.	
Q,6 (a) (b) (c) (d)	Instrument landing system. Ferrite device Isolator Hybrid ring	[5] [5] [5]

Page 1 of 1

32D6CAE73823A2A9FE2C2E7C15C6E12B