School of Architecture

School of Engineering & Technology

1.92

and a statement -

School of Pharmacy

IC KALSEKAR TECHNICAL CAMPUS

Knowledge Resource & Relay Centre (KRRC)

AIKTC/KRRC/SoET/ACKN/QUES/2018-19/	Date:
AIKIC/KRRC/SOET/ACKN/QUES/2018-19/	Date:

School: SoET-CBSGS Branch: MECH. ENGG. SEM: VIII

To, Exam Controller, AIKTC, New Panyel.

Dear Sir/Madam,

Received with thanks the following Semester/Unit Test-I/Unit Test-II (Reg./ATKT) question papers from your exam cell:

Sr.	Subject Name	Subject Code	Format		No. of
No.		destrates and	SC	HC	Copies
1	Design of Mechanical Systems	MEC801		~	02
2	Industrial Engineering and Management	MEC802		1	02
3	Refrigeration and Air Conditioning	MEC803		V	02
4	Elective-II Automobile engineering	MEE802X		~	02
5					
6					
			2.4		

Note: SC - Softcopy, HC - Hardcopy

(Shaheen Ansari) Librarian, AIKTC

BE-sem-VIII - CBS45 -Mech

8/5/19

Paper / Subject Code: 53301 / Design of Mechanical Systems

(Hours 3)

[Total Marks: 80]

	N.B.	1) Question No. 1 is compulsory	
		2) Solve Any Three from remaining Five questions.	
		3) Use of standard data book like PSG, Mahadevan and Kale Khandare is permitted	
		4) Assume suitable data if necessary, giving justification	
QI	Answ	ver any Four from the following	
a)		the basic constructional details of different types ropes used in EOT crane. And do you understand by $6 \approx 37$ rope?	5
b)	Explu	in Methodology for mechanical system design with suitable example?	5
c)	State	the significance of specific speed and NPSH in the design of a centrifugal pump?	5
d)	Expla Engir	in why an $1-$ section with $Ixx \le 4$ 1yy is selected for connecting rods of an 1.C. as?	5
e)	Why clean	cleaning of belt is necessary for belt conveyor? List down the usual types of ers.	5
Q.2	A Ic H N	ollowing specification refers to an EOT crane. pplication - Class II bad to be lifted - 80 KN loisting Speed - 6 m/min laximum lift - 10 m Select a standard hook, material and design stresses induced at the most critical section.	20
	¢.	Select suitable type and size of the wire rope for an expected life of 12 months.	
Q.3	at 300	trifugal pump directly coupled to a motor is required to deliver 10001.PM of water C against a total head of 25 m. Select the type of motor speed and determine the power. Determine the impeller diameter, inlet and outlet vane angles and no. of vanes.	20
	с. d. e.	Design the impeller shaft. Design the shape of the volute casing. Decide diameters of the suction and delivery pipes.	
		TURN OVER	
55376			

52D665BA610210D6637CEC2F4931B535

Paper / Subject Code: 53301 / Design of Mechanical Systems

2

Q.4.	Design the complete 20° troughing belt conveyer including drive for the following Specification.	20
	Material to be conveyed =Coal.	
	Maximum lump size = 100 mm	
	Capacity = 250 TPH.	
	Inclination = 12°	
	Center to centre distance = 100 m.	
Q.5. a)	For the design of a 2 X 3 machine tool gear box with following specification	15
	$N_{min} = 100$ rpm, $N_{motor} = 960$ rpm, GP ratio = 1.26	
	 Draw structural diagrams, 	
	ii. Draw ray diagram and speed chart,	
Q5; b)	Distinguish between gear pump and the centrifugal pump.	5
Q.6.8)	A four stroke single cylinder water cooled Diesel engine develops 7.5 KW brake power	15
	when operating at 1000rpm.	15
	a) Determine the size of engine (bore and stroke)	
	 b) Design wet liner and cylinder. 	
	c) Design piston with pin and piston rings	
Q.6. b)	Explain arithmetic progression law of stepped regulation in multispeed gear box?	5
	and the second	a)

55376

52D665BA610210D6637CEC2F4931B535

BE-sem-VIII- CBSGS - Mech

14/5/19

Paper / Subject Code: 53302 / Industrial Engineering & Management

(3 Hours)

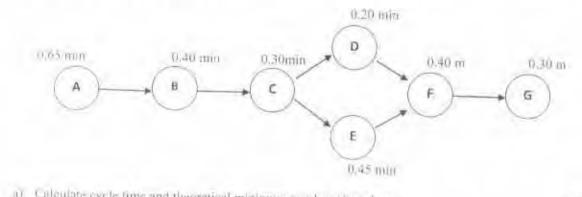
Total Marks: 80

 N B. 1) Question No.1 is compulsory. 2) Attempt any three questions out of the remaining five questions. 3) Figures to the right indicate full marks. 4) Assume suitable data wherever required but justify the same. 	
 Q I Short Answer questions. (Any Four) a. Analyzing layouts with computers with the help of CORELAP b. What are the different costs incurred while increasing the value of the product? c. Draw a FAST diagram considering the example of a 'Pen'. d. State the different steps involved in Method Study. c. Illustrate the concept of time value of money with the four variables involved in it. 	20
Q.2 a Define white productivity. What are the factors influencing Productivity of an Enterprise?	10
b. What are the steps involved in micro motion study? Describe five therbligs with their symbol, code and description.	e, colour 10
Q.3 a Define the term element. What are the reasons for breaking a job into elements? What are the d types of elements?	lifferent 10
b. What is the importance of plant layout? Explain types of layout with their advantages and disar	dvantages. 10
Q.4 a. Classify the different types of displays and different types of controls with respect to work syst	tem design. 10
b. Draw a Two handed process chart considering the example of assembly of "Nut and Bolt".	10

- Q.5 a. Define Rating. Why is it necessary to apply rating to the actual time which an operator takes to perform an operation? 10
- b. An operation involves the following elements given below with their related data,

Element	Observed time (minutes)	Rating	Remarks
À	0.20	90	
В	0.05	80	-
C	0,03	100	+
D	0.78	100	
E	0.06	100	
F	0.05	100	
G	0.02	85	Once in 5 pieces
H	0.06	80	
1	0.10	90	
1	0.04	90	Once in 20 pieces

Assuming rest and personal allowances as 13% and contingency allowance as 2%, calculate standard time of the job. 10


70988

Page 1 of 2

CF2EE518135A3F04241DECDA83077393

Paper / Subject Code: 53302 / Industrial Engineering & Management

- Q to a What do you understand by the term depreciation? What are the inputs required to calculate it? () we ar least four different types of depreciation. 10
- O.6 b. The precedence diagram for assembly activities A to G is shown below. The element times required for the activities are shown in the diagram in minutes. The line operates for 7 hours per day and an output of 550 units per day is desired.

bi	Group the took internet and theoretical minimum number of workers.	03
01	Group the task into an appropriate number of work stations. Calculate the balance efficiency.	04
	sourcease the binance efficiency.	.0.3

70988

C12L1518185A3F0424[DECDA83077393

BE- com- VIII - CBSQS- REAC-Mech

Paper / Subject Code: 53303 / Refrigeration & Air Conditioning

(3 Hours)

[Total Marks: 80]

[20]

20/5/19

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Answer any three from the remaining five questions.
 - (3) Assumptions made if any should be justified.
 - (4) Use of Refrigerant Charts, Psychrometric Chart, Friction Chart and Steam Tables are allowed.

Answer any four of the following.

- a) Draw simple vapour compression cycle on P-h diagram and explain the processes.
- b) What are non conventional refrigeration systems 7 Explain any one type.
- c) Air at T_{db}=30°C and RH=40% undergoes a constant humidity process until the final state is 20°C. Find i)Enthalpy of air at final state, ii)Cooling produced by the coil if the air flow is 200 CMM.
- List down types of aircraft refrigeration systems. Draw simple air cooling systems with neat schematic and T-s diagram.
- e) What is human comfort ? Explain with help of ASHRAE Comfort chart.
- What are primary and secondary refrigerants? Gives examples with application of each type.
- 2. a) A bootstrap air refrigeration system of 30 TR capacity is used for an aeroplane [12] flying at an altitude of 2000 m. The ambient air pressure and temperature are 0.8 bar and 0 C. The ram air pressure and temperature are 1.05 bar and 17 C. The pressure of air after isentropic compression in the main compressor is 4 bar. This air is now cooled intreased de 5 Bd air after isentropic compression in the main compressor is 4 bar. This air is now cooled intreased de 5 Bd air after isentropic compression in the main compressor is 4 bar. This air is now cooled intreased de 5 Bd air after isentropic compression in the main compressor is 4 bar. This air is now cooled intreased de 5 Bd air after isentropic compression in the main compressor is 4 bar. This air is now cooled intreased de 5 Bd air after isentropic compression in the main compressor is 4 bar. This air is now cooled intreased de 5 Bd air after isentropic compression in the main compressor is 4 bar. This air is now cooled intreased de 5 Bd air after isentropic compression in the main compressor is 4 bar. This air is now cooled intreased de 5 Bd air after isentropic compression in the main compressor is 4 bar. This air is now cooled intreased de 5 Bd air after isentropic compression in the main compressor is 4 bar. This air is now cooled intreased de 5 Bd air after isentropic compression in the main compressor is 4 bar. This air is now cooled intreased de 5 Bd air after isentropic compression in the main compressor is 4 bar. This air is now cooled intreased de 5 Bd air after isentropic compression in the main compressor is 4 bar. This air is now cooled intreased de 5 Bd air after isentropic compression in the main compressor is 4 bar. This air is now cooled intreased de 5 Bd air after isentropic compression in the main compressor is 4 bar. This air is now cooled is a set of 1.01 bar. If the air leaves the cabin at 25 C and the efficiencies for the main compression is a set of 1.01 bar. If the air leaves the cabin at 25 C and the efficienc
 - the main compressor, auxillary compressor and the cooling turbine are 80 %, 75 % and 80 % respectively; find : i) Power required to operate the system and ii. COP of the system

h)	Classify refrigeration compressors	. Explain each type in brief.	[08]
----	------------------------------------	-------------------------------	------

- 3. a) Define the terms DBT, WBT, DPT and RH. [04]
 b) What are the different types of Cooling Towers? Explain in brief. Define Range and Approach. [06]
 c) Draw a neat diagram of Electrolux vapour absorption refrigeration system and explain its working. [10]
- a) A vapour compression system using Ammonia works between -25 °C and [12] 40 °C as evaporator and condenser temperature respectively. Using P-h Chart, determine

69129

Page 1 of 2

B297F767DF520ADB91CFF850B670BA02

Paper / Subject Code: 53303 / Refrigeration & Air Conditioning

	 i) COP ii) Mass of refrigerant per TR iii) Piston displacement per TR using volumetric efficiency = 83 % iv) Heat rejected in the condenser per TR v) Ideal COP 	
	 b). Draw a neat sketch of Year Round Air Conditioning system and explain working of its components. 	[08]
5.	 a) What are the sources of cooling load for a Restaurant? Discuss in details. b) Define body temperature regulation and effects of extremes of hot and cold climate on human body. 	[06] [06]
	A sling psychrometer reads 40 °C DBT and 28 °C WBT when atmospheric pressure is 750 mm of Hg.	[08]
	Calculate using Steam Tables only i). Specific humidity ii). Relative humidity iii). Dew point temperature iv). Enthalpy	
6.	 Write short notes on any four. a) Liquefaction of Gases b) Duet Design Methods c) Desirable Properties of Refrigerants d) Thermoelectric Refrigeration e) Star Rating of Air Conditioners 	[20]

f) DART rating of Air Refrigeration Systems

69129

Page 2 of 2

B297E767DF520ADR91CFF850B670BA02

BE-Sem-VIII-Mech-CBSIS

Paper / Subject Code: 53309 / 6)Automobile Engineering

	Time: 3 Hours	larks: 80
N.B.	 Qu. 1 is compulsory Solve any three questions out of remaining five. Provide neat diagrams wherever necessary. All questions carry equal marks. 	
Qu.1	 Write short note on following (Any Four) a) Final Drive, b) Disc brake, c) Stub axles. d) Reversibility of Steering Gears, e) Aerodynamic Drag. 	[20]
Qu, 2	 A) Classify battery and explain Lead-Acid battery with neat diagram B) State the importance of vehicle body design explain three layouts each of Passenger car and bus. 	[10] [10]
Qu. 3	 A) Stating the requirements of suspension, explain Wishbone type suspension systems in detail. B) What are the requirements of starting motors? Explain FOLO-through and Dyer drive. 	1101
Qu. 4) A) With neat diagram explain construction and features of Air suspension.	[10]
	B) Classify gear box and explain sliding mesh gear box with diagram.	[10]
Qu. 5	 A) What is Electronic Control Module (ECM)? Explain. B) With neat diagram explain construction and working of Hydraulic 	[10]
	braking system.	[10]
Qu. 6	 Write short note on following, (Any four) a) Steering geometry b) Differential c) Alternator d) Developments in Automobile sensor technology e) classification of Tyres 	[20]

68054

AC11A4B895B758FBB750071CA0C00CA7