
Smart Library Management System Using
RFID

B.E. Dissertation
Submitted in partial fulfillment of the requirement of

University of Mumbai

For the Degree of

Bachelor of Engineering
(Electronics & Telecommunication Engineering)

by

Ansari Khalid 15DET51
Shaikh Mohammed Sakib 15DET78
Inamdar Mohammad Arbaz 15DET93
Shaikh Sohail 15DET79

Under the guidance of

Prof. Mazhar Malagi

Department of Electronics and Telecommunication Engineering
Anjuman-I-Islam’s Kalsekar Technical Campus,

Sector 16, New Panvel , Navi Mumbai
(Affiliated to University of Mumbai)

April 2017

IR@AIKTC aiktcdspace.org

Anjuman-I-Islam’s

Kalsekar Technical Campus
(Affiliated to the University of Mumbai)

Plot 2 and 3,Sector 16, Khandagaon, Near Thana Naka, New Panvel, Navi Mumbai 410206.

Certificate

This is to certify that, the dissertation titled

“Smart Library Management System Using RFID ”

is a bonafide work done by

Ansari Khalid (15DET51)
Shaikh Mohammed Sakib (15DET78)

Inamdar Mohammad Arbaz (15DET93)
Shaikh Sohail (15DET79)

and is submitted in the partial fulfillment of the requirement for the
degree of

Bachelor of Engineering
in

Electronics and Telecomunication Engineering
to the

University of Mumbai.

Guide Project Coordinator

Head of Department Principal

i

IR@AIKTC aiktcdspace.org

Certificate of Approval by Examiners

This is to certify that the dissertation entitled ”Smart Library Management
System Using RFID” is a bonafide work done by Ansari Khalid Shaikh Mo-
hammed Sakib Shaikh Sohail Inamdar Mohammad Arbaz under the guidance
of Mr. Mazhar Malagi. This dissertation has been approved for the award of Bach-
elor’s Degree in Electronics and Telecommunication Engineering, University of
Mumbai.

Examiners:

Name: Name:

ii

IR@AIKTC aiktcdspace.org

Acknowledgments

We are highly grateful to the Prof. Afzal Shaikh, HOD of Electronic and Telecommuni-

cation Department, Kalsekar Technical Campus (New Panvel), for providing this oppor-

tunity to carry out the project. We would like to express our gratitude to other faculty

members of Electronics and Telecommunication Engineering Department for providing

academic inputs, guidance and encouragement throughout this period. We would like

to express our deep sense of gratitude and thank to prof. Mazhar Malagi, for the wise

council and able guidance it would have not been possible to carry out this project in

this manner. Finally, we express our indebtedness to all who have directly or indirectly

contributed to the successful completion of this project.

IR@AIKTC aiktcdspace.org

Abstract

Applicability of Radio Frequency Identification (RFID) system which is a new generation

of Auto Identification and Data collection technology in a future Smart Library Man-

agement System is presented in this paper. It helps to automate business processes and

allows identification of large number of tagged objects like books, using radio waves. In

existing system barcode and token card system were used. Barcodes have no read/write

capabilities; they do not contain any added information such as expiry date etc. and it

needs line of sight, less security and it also can easily damaged. By using token card

system, they are very labor intensive and work process for the librarians was more. By

considering the above demerits in the existing systems, the proposed Smart RFID system

, which is a wireless non-contact system that uses radio frequency to transfer data from

a tag attached to an object, for the purpose of automatic identification and tracking.

RFID doesnt need the line of sight, it remove manual book keeping of records, improved

utilization of resources like manpower, infrastructure etc. Also less time consumption as

line of sight and manual interactions are not needed for RFID Tag reading. RFID based

Library Management system would helps to allow fast transaction flow for the library and

will prove immediate and long term benefits to library in traceability and security.

iv

IR@AIKTC aiktcdspace.org

List of Figures

1.1 Items personalised model for RFID system 1
1.2 RFID tag . 2

3.1 Proposed Library Layout . 8

4.1 Cloud Based Intelligent IoT Framework 10
4.2 Database . 20
4.3 Reader module . 21

5.1 Add Book Form . 34
5.2 Main Form . 36
5.3 Register Form . 36

v

IR@AIKTC aiktcdspace.org

Contents

Abstract iv

List of Figures v

1 Introduction 1
1.1 Library Management System: . 1
1.2 RFID: . 2

2 Literature Survey 3
2.1 ”AN IOT BASED SECURED SMART LIBRARY SYSTEM WITH NFC

BASED BOOK TRACKING” . 3
2.2 Conclusion . 3
2.3 Smart Library Management System using RFID 5
2.4 Conclusion . 5

3 Problem Statement 7
3.1 Problem Statement . 7
3.2 Proposed Design . 7

4 Technical Details 10
4.1 Methodology . 10
4.2 Project Requirements . 11

4.2.1 Software Requirements . 11
4.2.1.1 Microsoft Visual Studio 11
4.2.1.2 Visual Studio 2017 . 12
4.2.1.3 Architecture . 12
4.2.1.4 Features . 14

4.2.2 Microsoft SQL server . 18
4.2.3 Hardware Requirements . 19

4.2.3.1 RFID tag . 20
4.2.3.2 DipTrace . 23
4.2.3.3 PCB layout . 23
4.2.3.4 Component editor . 24
4.2.3.5 Pattern editor . 25

5 Expected Outcome 26
5.0.1 Main Form Designer . 26
5.0.2 Main Form . 35

vi

IR@AIKTC aiktcdspace.org

References 37

vii

IR@AIKTC aiktcdspace.org

Chapter 1

Introduction

1.1 Library Management System:

A library management system (LMS) can be considered as an enterprise resource planning

(ERP) system for a library. It is formed from a suite of integrated functions to manage a

diverse range of processes within a library. These modules’ typically include: cataloging

(classifying and indexing materials), acquisitions (ordering, receiving, and invoicing ma-

terials), circulation (lending materials to users and receiving them back), serials (tracking

journal, magazine and newspaper holdings), OPAC (’Online Public Access Catalogue’–the

public interface for users).

Figure 1.1: Items personalised model for RFID system

1

IR@AIKTC aiktcdspace.org

1.2 RFID:

It is the wireless non contact system that uses radio frequency EM waves to transfer data

from a tag attached to an object, for automatic identification and tracking. A Radio-

Frequency Identification system has three parts that are a scanning antenna ,a transceiver

with a decoder to interpret the data, a transponder - the RFID tag - that has been

programmed with information. The scanning antenna puts out radio-frequency signals in

a relatively short range. The RF radiation provides a means of communicating with the

transponder (the RFID tag) and provides the RFID tag with the energy to communicate

(in the case of passive RFID tags).The scanning antennas can be permanently affixed

to a surface, handheld antennas are also available. They can take whatever shape you

need; for example, you could build them into a door frame to accept data from persons

or objects passing through. When an RFID tag passes through the field of the scanning

antenna, it detects the activation signal from the antenna. That ”wakes up” the RFID

chip, and it transmits the information on its microchip to be picked up by the scanning

antenna. The RF low frequency range 120-150 KHz is used for the data transmission.

Figure 1.2: RFID tag

2

IR@AIKTC aiktcdspace.org

Chapter 2

Literature Survey

2.1 ”AN IOT BASED SECURED SMART LIBRARY

SYSTEM WITH NFC BASED BOOK TRACK-

ING”

A lot of attention. But the application of the internet technology in library management

is at its infancy. In a library, books are arranged in shelves based on their classification

of subject. There is a lot of movement of these books in and out of the library and so

there is every possibility that these books get misplaced. When such misplacement of

books occurs, it becomes a tall order for both the librarian and the user to search for the

books. Though the OPAC gives the rack and the access number of the books, it is always

an uphill task to even find the rack in huge libraries. The scenario becomes worse if the

books are misplaced. So a system that could lead the user directly to the place where

the book is placed would come in very handy and it also saves a lot of time. It also helps

in finding the misplaced books. a connected library system where the user can utilize

his mobile phone to connect to the library system and also find the position of the book

through a local positioning system would prove to be very useful.

2.2 Conclusion

The internet every day, the IoT is definitely a promising technology for the future. In

this paper, we have exploited IoT and mobile technologies for easy and efficient library

3

IR@AIKTC aiktcdspace.org

management. The major goal of this proposed work is to reduce the burden of the library

user to track a book and to fetch it from its location. Here we have used the local

positioning system and embedded tags on the book to communicate with each other and

with the user’s smartphone. With much ease, the user can interact with the library server

to check the book more accurately.

4

IR@AIKTC aiktcdspace.org

2.3 Smart Library Management System using RFID

Library Management System: A library management system (LMS) can be considered

as an enterprise resource planning (ERP) system for a library. It is formed from a suite

of integrated functions to manage a diverse range of processes within a library. These

modules’ typically include: cataloging (classifying and indexing materials), acquisitions

(ordering, receiving, and invoicing materials), circulation (lending materials to users and

receiving them back), serials (tracking journal, magazine and newspaper holdings), OPAC

(’Online Public Access Catalogue’–the public interface for users).

RFID: It is the wireless non contact system that uses radio frequency EM waves to

transfer data from a tag attached to an object, for automatic identification and tracking.

A Radio-Frequency Identification system has three parts that are a scanning antenna

,a transceiver with a decoder to interpret the data, a transponder - the RFID tag -

that has been programmed with information. The scanning antenna puts out radio-

frequency signals in a relatively short range. The RF radiation provides a means of

communicating with the transponder (the RFID tag) and provides the RFID tag with

the energy to communicate (in the case of passive RFID tags).The scanning antennas can

be permanently affixed to a surface, handheld antennas are also available. They can take

whatever shape you need; for example, you could build them into a door frame to accept

data from persons or objects passing through. When an RFID tag passes through the

field of the scanning antenna, it detects the activation signal from the antenna. That

”wakes up” the RFID chip, and it transmits the information on its microchip to be picked

up by the scanning antenna. The RF low frequency range 120- 150 KHz is used for the

data transmission.

2.4 Conclusion

RFID implementation in libraries has been discussed. The whole system was designed to

overcome the disadvantages of barcode systems and thus demonstrated. The entire project

was planned to reduce the need of skilled librarians. Though the system is more expensive

than the barcode systems, security is ensured and is more efficient. RFID technology is

also applicable in various fields like: Asset tracking, people tracking, healthcare, animal

tracking, document tracking, object tracking in stores, building access control, airline

5

IR@AIKTC aiktcdspace.org

baggage tracking and toll collection at toll booths

6

IR@AIKTC aiktcdspace.org

Chapter 3

Problem Statement

3.1 Problem Statement

This project idea was taken up with a vision to create a Smart Library Management

System using RFID to minimize the requirement of a librarian.Here is a list of some

features of Library Management System which AmpleTrails offer:

Keep record of different categories like; Books, Journals, Newspapers, Magazines,

etc. Classify the books subject wise. Easy way to enter new books. Keep record of

complete information of a book like; Book name, Author name, Publishers name, Date/

Year of publication, Cost of the book, Book purchasing date/ Bill no. Easy way to make

a check-out. Easy way to make a check-in. Automatic fine calculation for late returns.

Different criteria for searching a book. Different kind of reports like; total no. of books,

no. of issued books, no. of journals, etc. Easy way to know how many books are issued to

a particular student. Easy way to know the status of a book. Event calendar for librarian

to remember their dates. My Notes section for librarian to write any note. Online access

for registered user to see the status of their books.

3.2 Proposed Design

Tagging: Tag is the most important link in any RFID system. It has the ability to store

information relating to the specific item to which they are attached, rewrite again without

any requirement for contact or line of sight. Data within a tag may provide identification

for an item, proof of ownership, original storage location, loan status and history. RFID

7

IR@AIKTC aiktcdspace.org

tags have been specifically designed to be affixed into library media, including books,

CDs, DVDs and tapes. The role of the librarian is to classify the books into groups and

paste the RFID tags on them. These paper-like tags helps in tracking the books within

the range of the reader.

Figure 3.1: Proposed Library Layout

Check in/out service: The counter station is a staff assisted station on services

such as loan, return, tagging, sorting and etc. The patron approaches the counter to

borrow or return the book. First the patron is supposed to identify themselves using the

tags provided to them. The staff at the counter then uses a reader to read the tags to

make an entry in the central database. In case of book return, the staff collects the book

and reads the tag. If the book is returned beyond the due date, fine is collected from the

patron.

Self check in/out service: The system basically consists of a computer interfaced

with a RFID reader, plus special software for personal identification, book and other

media handling and circulation. After identifying the patron with a library ID card, a

RFID card- containing the patron details and their ID, the patron is asked to choose

the next action (check-out or check in of one or more books). After choosing check-out

, the patron puts the book(s) in front of the RFID reader and the display will show the

book title, author name and its ID number (other optional information can be shown if

desired) which have been checked out .It displays the date before which the book is to be

returned. Where as in check in, the patron shows the book(s) in front of the RFID reader

and the same will be displayed as in check out. Besides, if there are delays in the return

of book(s), the fine amount will be displayed.

Shelf Management: Shelf management includes locating and identifying items on

8

IR@AIKTC aiktcdspace.org

the shelves as an easy task for librarians. It comprises basically of a scanner and a base

station. The system is designed to cover three main requirements: Search for individual

books requested, Inventory check of the whole library stock, Search for books which are

miss-helved.

9

IR@AIKTC aiktcdspace.org

Chapter 4

Technical Details

4.1 Methodology

The Initial Setup
Whenever a book is acquired by the library, an RFID tags are placed into the books
with the relevant information like, call number, author name, and book number, etc. The
detailed information regarding the book is also stored in the computer database. The
computer database also stores all information for individual users (users) of the library.
Each user is supplied with registered RFID cards. These cards carry identification data
and details like: address, roll number, and telephone no. etc. for each user.

Figure 4.1: Cloud Based Intelligent IoT Framework

There is an administrator with special privileges who has a unique master password
controlling the GUI of the RFID SLMS system. As soon as he powers on the system,
the first screen displays the LOGIN dialogue box. First he will need to scan his ID card
in front of the RFID reader and then entering the corresponding password to enable the
system for further usage. When a user wants to return books, he simply places the books
again in front of the RFID connected with the controller.

10

IR@AIKTC aiktcdspace.org

4.2 Project Requirements

4.2.1 Software Requirements

4.2.1.1 Microsoft Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft.

It is used to develop computer programs for Microsoft Windows superfamily of operating

systems, as well as web sites, web applications and web services. Visual Studio uses Mi-

crosoft software development platforms such as Windows API, Windows Forms, Windows

Presentation Foundation, Windows Store and Microsoft Silverlight. It can produce both

native code and managed code. Visual Studio includes a code editor supporting Intel-

liSense as well as code refactoring. The integrated debugger works both as a source-level

debugger and a machine-level debugger. Other built-in tools include a forms designer for

building GUI applications, web designer, class designer, and database schema designer.

It accepts plug-ins that enhance the functionality at almost every levelincluding adding

support for source-control systems (like Subversion and Visual SourceSafe) and adding

new toolsets like editors and visual designers for domain-specific languages or toolsets

for other aspects of the software development lifecycle (like the Team Foundation Server

client: Team Explorer). Visual Studio supports different programming languages and

allows the code editor and debugger to support (to varying degrees) nearly any program-

ming language, provided a language-specific service exists. Built-in languages include C,

C++and C++/CLI (via Visual C++), VB.NET (via Visual Basic .NET), C sharp (via

Visual C sharp), and F sharp (as of Visual Studio 2010). Support for other languages such

as M, Python, and Ruby among others is available via language services installed sepa-

rately. It also supports XML/XSLT, HTML/XHTML, JavaScript and CSS. Individual

11

IR@AIKTC aiktcdspace.org

language-specific versions of Visual Studio also exist which provide more limited language

services to the user: Microsoft Visual Basic, Visual J sharp, Visual C sharp, and Visual

C++. Microsoft provides ”Express” editions of its Visual Studio at no cost. Commercial

versions of Visual Studio along with select past versions are available for free to students

via Microsoft’s DreamSpark program.

4.2.1.2 Visual Studio 2017

Unparalleled productivity for any dev, any app, and any platform. Use Visual Studio 2017

to develop apps for Android, iOS, Windows, Linux, web, and cloud. Code fast, debug

and diagnose with ease, test often, and release with confidence. You can also extend and

customize Visual Studio by building your own extensions

4.2.1.3 Architecture

Visual Studio does not support any programming language, solution or tool intrinsically,

instead it allows the plugging of functionality coded as a VSPackage. When installed,

the functionality is available as a Service. The IDE provides three services: SVsSolu-

tion, which provides the ability to enumerate projects and solutions; SVsUIShell, which

provides windowing and UI functionality (including tabs, toolbars and tool windows);

and SVsShell, which deals with registration of VSPackages. In addition, the IDE is also

responsible for coordinating and enabling communication between services All editors, de-

signers, project types and other tools are implemented as VSPackages. Visual Studio uses

COM to access the VSPackages. The Visual Studio SDK also includes the Managed Pack-

age Framework (MPF), which is a set of managed wrappers around the COM-interfaces

that allow the Packages to be written in any CLI compliant language. However, MPF

does not provide all the functionality exposed by the Visual Studio COM interfaces. The

12

IR@AIKTC aiktcdspace.org

services can then be consumed for creation of other packages, which add functionality to

the Visual Studio IDE. Support for programming languages is added by using a specific

VSPackage called a Language Service. A language service defines various interfaces which

the VSPackage implementation can implement to add support for various functionalities.

Functionalities that can be added this way include syntax coloring, statement comple-

tion, brace matching, parameter information tooltips, member lists and error markers for

background compilation. If the interface is implemented, the functionality will be avail-

able for the language. Language services are to be implemented on a per-language basis.

The implementations can reuse code from the parser or the compiler for the language.

Language services can be implemented either in native code or managed code. For native

code, either the native COM interfaces or the Babel Framework (part of Visual Studio

SDK) can be used. For managed code, the MPF includes wrappers for writing managed

language services. Visual Studio does not include any source control support built in but

it defines two alternative ways for source control systems to integrate with the IDE. A

Source Control VSPackage can provide its own customised user interface. In contrast, a

source control plugin using the MSSCCI (Microsoft Source Code Control Interface) pro-

vides a set of functions that are used to implement various source control functionality,

with a standard Visual Studio user interface. MSSCCI was first used to integrate Visual

SourceSafewith Visual Studio 6.0 but was later opened up via the Visual Studio SDK.

Visual Studio .NET 2002 used MSSCCI 1.1, and Visual Studio .NET 2003 used MSSCCI

1.2. Visual Studio 2005, 2008 and 2010 use MSSCCI Version 1.3, which adds support for

rename and delete propagation as well as asynchronous opening. Visual Studio supports

running multiple instances of the environment (each with its own set of VSPackages). The

instances use different registry hives (see MSDN’s definition of the term ”registry hive”

13

IR@AIKTC aiktcdspace.org

in the sense used here) to store their configuration state and are differentiated by their

AppId (Application ID). The instances are launched by an AppId-specific .exe that selects

the AppId, sets the root hive and launches the IDE. VSPackages registered for one AppId

are integrated with other VSPackages for that AppId. The various product editions of

Visual Studio are created using the different AppIds. The Visual Studio Express edition

products are installed with their own AppIds, but the Standard, Professional and Team

Suite products share the same AppId. Consequently, one can install the Express editions

side-by-side with other editions, unlike the other editions which update the same instal-

lation. The professional edition includes a superset of the VSPackages in the standard

edition and the team suite includes a superset of the VSPackages in both other editions.

The AppId system is leveraged by the Visual Studio Shell in Visual Studio 2008.

4.2.1.4 Features

Code editor

Like any other IDE, it includes a code editor that supports syntax highlighting and code

completion using IntelliSense for not only variables, functions and methods but also lan-

guage constructs like loops and queries. IntelliSense is supported for the included lan-

guages, as well as for XML and for Cascading Style Sheets and JavaScript when developing

web sites and web applications. Autocomplete suggestions are popped up in a modeless

list box, overlaid on top of the code editor. In Visual Studio 2008 onwards, it can be made

temporarily semi-transparent to see the code obstructed by it. The code editor is used for

all supported languages. The Visual Studio code editor also supports setting bookmarks

in code for quick navigation. Other navigational aids include collapsing code blocks and

incremental search, in addition to normal text search and regex search. The code edi-

14

IR@AIKTC aiktcdspace.org

tor also includes a multi-item clipboard and a task list. The code editor supports code

snippets, which are saved templates for repetitive code and can be inserted into code and

customized for the project being worked on. A management tool for code snippets is built

in as well. These tools are surfaced as floating windows which can be set to automatically

hide when unused or docked to the side of the screen. The Visual Studio code editor also

supports code refactoring including parameter reordering, variable and method renaming,

interface extraction and encapsulation of class members inside properties, among others.

Visual Studio features background compilation (also called incremental compilation). As

code is being written, Visual Studio compiles it in the background in order to provide

feedback about syntax and compilation errors, which are flagged with a red wavy un-

derline. Warnings are marked with a green underline. Background compilation does not

generate executable code, since it requires a different compiler than the one used to gen-

erate executable code. Background compilation was initially introduced with Microsoft

Visual Basic but has now been expanded for all included languages.

Debugger

Visual Studio includes a debugger that works both as a source-level debugger and as a

machine-level debugger. It works with both managed code as well as native code and can

be used for debugging applications written in any language supported by Visual Studio. In

addition, it can also attach to running processes and monitor and debug those processes.

If source code for the running process is available, it displays the code as it is being run.

If source code is not available, it can show the disassembly. The Visual Studio debugger

can also create memory dumps as well as load them later for debugging. Multi-threaded

programs are also supported. The debugger can be configured to be launched when an

application running outside the Visual Studio environment crashes. The debugger allows

15

IR@AIKTC aiktcdspace.org

setting breakpoints (which allow execution to be stopped temporarily at a certain posi-

tion) and watches (which monitor the values of variables as the execution progresses).

Breakpoints can be conditional, meaning they get triggered when the condition is met.

Code can be stepped over, i.e., run one line (of source code) at a time. It can either

step into functions to debug inside it, or step over it, i.e., the execution of the function

body isn’t available for manual inspection. The debugger supportsEdit and Continue,

i.e., it allows code to be edited as it is being debugged (32 bit only; not supported in 64

bit). When debugging, if the mouse pointer hovers over any variable, its current value is

displayed in a tooltip (”data tooltips”), where it can also be modified if desired. During

coding, the Visual Studio debugger lets certain functions be invoked manually from the

Immediate tool window. The parameters to the method are supplied at the Immediate

window.

Designer

Visual Studio includes a host of visual designers to aid in the development of applications.

These tools include: Windows Forms Designer The Windows Forms designer is used to

build GUI applications using Windows Forms. Layout can be controlled by housing the

controls inside other containers or locking them to the side of the form. Controls that

display data (like textbox, list box, grid view, etc.) can be bound to data sources like

databases or queries. Data-bound controls can be created by dragging items from the

Data Sources window onto a design surface. The UI is linked with code using an event-

driven programming model. The designer generates either C sharp orVB.NET code for

the application.

WPF Designer

The WPF designer, codenamed Cider, was introduced with Visual Studio 2008. Like

16

IR@AIKTC aiktcdspace.org

the Windows Forms designer it supports the drag and drop metaphor. It is used to au-

thor user interfaces targeting Windows Presentation Foundation. It supports all WPF

functionality including data binding and automatic layout management. It generates

XAML code for the UI. The generated XAML file is compatible with Microsoft Expres-

sion Design, the designer-oriented product. The XAML code is linked with code using a

code-behindmodel. Web designer/development Visual Studio also includes a web-site edi-

tor and designer that allows web pages to be authored by dragging and dropping widgets.

It is used for developing ASP.NET applications and supports HTML, CSS and JavaScript.

It uses a code-behind model to link with ASP.NET code. From Visual Studio 2008 on-

wards, the layout engine used by the web designer is shared with Microsoft Expression

Web. There is also ASP.NET MVC support for MVC technology as a separate download

and ASP.NET Dynamic Data project available from Microsoft.

Class designer

The Class Designer is used to author and edit the classes (including its members and their

access) using UML modeling. The Class Designer can generate C and VB.NET code out-

lines for the classes and methods. It can also generate class diagrams from hand-written

classes.

Data designer

The data designer can be used to graphically edit database schemas, including typed ta-

bles, primary and foreign keys and constraints. It can also be used to design queries from

the graphical view.

Mapping designer

From Visual Studio 2008 onwards, the mapping designer is used by LINQ to SQL to design

the mapping between database schemas and the classes that encapsulate the data. The

17

IR@AIKTC aiktcdspace.org

new solution from ORM approach, ADO.NET Entity Framework, replaces and improves

the old technology.

4.2.2 Microsoft SQL server

MS SQL Server is a relational database management system (RDBMS) developed by

Microsoft. This product is built for the basic function of storing retrieving data as required

by other applications. It can be run either on the same computer or on another across

a network. This tutorial explains some basic and advanced concepts of SQL Server such

as how to create and restore data, create login and backup, assign permissions, etc. Each

topic is explained using examples for easy understanding.

Audience

This tutorial is designed for all those readers who want to learn the fundamentals of SQL

Server and put it into practice.

Usage of SQL Server

To create databases.

To maintain databases.

To analyze the data through SQL Server Analysis Services (SSAS).

To generate reports through SQL Server Reporting Services (SSRS).

To carry out ETL operations through SQL Server Integration Services (SSIS).

Table Script

CREATE TABLE (dbo).(Rfid BookDetails) (

(BookID) INT IDENTITY (1, 1) NOT NULL,

(Title) VARCHAR (MAX) NULL,

(Author) VARCHAR (MAX) NULL,

18

IR@AIKTC aiktcdspace.org

(Domain) VARCHAR (MAX) NULL,

(TotalQuantity) INT NULL,

(AvailableQuantity) INT NULL,

(OccupiedQuantity) INT NULL,

PRIMARY KEY CLUSTERED ((BookID) ASC));

CREATE TABLE (dbo).(Rfid StudentDetails)

((Id) INT IDENTITY (1, 1) NOT NULL,

(StudentRfid) VARCHAR (50) NULL,

(Name) VARCHAR (MAX) NULL,

(Roll) VARCHAR (50) NULL,

(Year) VARCHAR (50) NULL,

(Branch) VARCHAR (MAX) NULL,

PRIMARY KEY CLUSTERED ((Id) ASC));

CREATE TABLE (dbo).(Rfid Temp)

((Id) INT NOT NULL,

(Type) VARCHAR (500) NULL,

(Value) VARCHAR (MAX) NULL,

PRIMARY KEY CLUSTERED ((Id) ASC));

4.2.3 Hardware Requirements

RFID Reader (EM-18)

19

IR@AIKTC aiktcdspace.org

Figure 4.2: Database

This module directly connects to any microcontroller UART or through a RS232

converter to PC.It gives UART/Wiegand26 output. This RFID Reader Module works

with any 125 KHz RFID tags

Specifications

5VDC through USB (External 5V supply will boost range of the module)

Current: ¡50mA

Operating Frequency: 125Khz

Read Distance: 10cm

Size of RFID reader module: 32mm(length) * 32mm(width) * 8mm(height)

4.2.3.1 RFID tag

RFID tagging is an ID system that uses small radio frequency identification devices for

identification and tracking purposes. An RFID tagging system includes the tag itself, a

read/write device, and a host system application for data collection, processing, and

transmission.

20

IR@AIKTC aiktcdspace.org

Figure 4.3: Reader module

RS232 interface format:

10 ASCII DATA (card no.)+ 2 ASCII DATA (XOR result)

E.g. Card number is 4500C5D1E9B8 read from reader then the card number on card

will be as below.

45 - Preamble

00C5D1E9 value in Hex = 12964329. / B8 is XOR value for (45 XOR 00 XOR C5 XOR

D1 XOR E9)

Hence number on the card is 0012964329.

1. Data baud rate: 9600 bps

21

IR@AIKTC aiktcdspace.org

2. Data bit 8 bits

3. Parity check: None

4. Stop bit

USB TTL

DESCRIPTION

The cable is easiest way ever to connect to your microcontroller/Raspberry Pi/WiFi

router serial console port. Inside the big USB plug is a USB¡-¿Serial conversion chip and

at the end of the 36” cable are four wire - red power, black ground, white RX into USB

port, and green TX out of the USB port. The power pin provides the 5V @ 500mA

direct from the USB port and the RX/TX pins are 3.3V level for interfacing with the

most common 3.3V logic level chipsets.

Because of the separated pin plugs, this cable is ideal for powering and connecting up to

the debug/login console on the Raspberry Pi or BeagleBone Black. Connect the pins as

shown to power the Pi or BBB and establish the RX/TX link.

If you are running Windows 7/8/10 etc, check this tutorial page with links to drivers for

both PL2303 and CP2102 If you are running Mac OS X, check this tutorial page with

links to drivers for both PL2303 and CP2012 If you are running Linux, drivers are

already included in the kernel, no need to install anything! Also handy for hacking WiFi

routers to install alternate OS’s, or nearly any other 3.3V logic serial port. This is easier

to use than an FTDI cable in many cases because the wires are separated. Note that we

call this a ”TTL cable” (since that’s what they’re called) but technically it’s CMOS

logic.

This cable is not good for Arduino re-programming such as a Boarduino, MENTA,

Monochron, etc. because it does not have the DTR/RTS wire necessary for initiating

22

IR@AIKTC aiktcdspace.org

the bootloader reboot sequence. For that we suggest an FTDI cable or FTDI friend.

4.2.3.2 DipTrace

DipTrace is an EDA/CAD software for creating schematic diagrams and printed circuit

boards. The developers provide a multi-lingual interface and tutorials (currently

available in English and 21 other languages). DipTrace has 4 modules: schematic

capture editor, PCB layout editor with built-in shape-based autorouter and 3D-preview

and export, component editor, and pattern editor.

Basic features

Simple user interface Multi-sheet and hierarchical schematics High-speed and

Differential signal routing Smart manual routing modes Wide import/export capabilities

High-speed shape-based autorouter Advanced verifications with real-time DRC

Real-time 3D PCB preview Export of PCB to STEP 3D file format ODB++ and

Gerber (including Gerber X2) manufacturing outputs

Advanced circuit design tool with support of multi-sheet and multi-level hierarchical

schematics that delivers a number of features for visual and logical pin connections.

Cross-module management ensures that principal circuits can be easily converted into a

PCB, back-annotated, or imported/exported from/to other EDA software, CAD formats

and net-lists. DipTrace Schematic has ERC verification and Spice export for external

simulation.

4.2.3.3 PCB layout

Engineering tool for board design with smart manual routing, differential pairs,

length-matching tools, shape-based autorouter, advanced verification, layer stackup

manager, and wide import/export capabilities. Design requirements are defined by net

23

IR@AIKTC aiktcdspace.org

classes, class-to-class rules, and detailed settings by object types for each class or layer.

When routing with real-time DRC, the program reports errors on the fly before actually

making them. DRC also checks length and phase tolerances for differential pairs and

controls signal synchronization for nets and buses (including layer stackup and bonding

wire induced signal delays). The board can be previewed in 3D and exported to STEP

format for mechanical CAD modeling. Design rule check with in-depth detailing and net

connectivity verification procedures are available.

3D-preview and export

This module includes real-time 3D preview and export feature. It shows the model of

the manufactured printed circuit board with all components installed. Rotate board in

three axes, zoom in and out in real time, change colors of the board, copper areas, solder

mask, silkscreen, and background. 3D preview works on all stages of the design. Board

can be exported to STEP or VRML 2.0 formats for mechanical CAD modeling. More

than 7500 3D models of PCB packages are supplied for free. Externally designed 3D

models in *.wrl, *.step, *.iges, and *.3ds formats can be uploaded and attached to

patterns in Pattern Editor or PCB Layout.

4.2.3.4 Component editor

Manage component libraries and create single- or multi-part components by selecting a

template and its dimensions, defining visual and electrical pin parameters, setting up a

Spice model, and attaching pattern with a 3D model to finalize component creation.

BSDL import, bulk pin naming, and pin manager tools for pins and buses. Importing

libraries from different EDA formats. More than 140000 components in standard

libraries.

24

IR@AIKTC aiktcdspace.org

4.2.3.5 Pattern editor

Draw patterns with various types of shapes, pads, holes, and dimensions. Circle, lines

(headers, DIP), square (QFP), matrix (BGA), rectangle (RQFP), and zig-zag standard

templates. Creation of pattern is basically selecting a template, entering a couple of

vital parameters, drawing the silkscreen, and launching automatic pad renumbering.

Custom templates can be created for non-standard patterns. DXF import makes

creating complex layouts easier.

25

IR@AIKTC aiktcdspace.org

Chapter 5

Expected Outcome

We can ensure that using the concept of Smart Library Management system, is made
well manage to access and map the status of book racks reducing the human labour.
This reduces the human involvement in the libray,and making that outdated library a
history.

5.0.1 Main Form Designer

namespace Library Management
{
partial class Form1
{
/// ¡summary¿
/// Required designer variable.
/// ¡/summary¿
private System.ComponentModel.IContainer components = null;

/// ¡summary¿
/// Clean up any resources being used.
/// ¡/summary¿
/// ¡param name=”disposing”¿true if managed resources should be disposed; otherwise,
false.¡/param¿ protected override void Dispose(bool disposing)
{
if (disposing && (components != null))
{
components.Dispose();
}
base.Dispose(disposing);
}

region Windows Form Designer generated code

26

IR@AIKTC aiktcdspace.org

/// ¡summary¿
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// ¡/summary¿
private void InitializeComponent()
{
this.tableLayoutPanel1 = new System.Windows.Forms.TableLayoutPanel();
this.label1 = new System.Windows.Forms.Label();
this.tableLayoutPanel2 = new System.Windows.Forms.TableLayoutPanel();
this.register = new System.Windows.Forms.Button();
this.addBook = new System.Windows.Forms.Button();
this.button3 = new System.Windows.Forms.Button();
this.tableLayoutPanel3 = new System.Windows.Forms.TableLayoutPanel();
this.tableLayoutPanel4 = new System.Windows.Forms.TableLayoutPanel();
this.label2 = new System.Windows.Forms.Label();
this.label3 = new System.Windows.Forms.Label();
this.label4 = new System.Windows.Forms.Label();
this.label5 = new System.Windows.Forms.Label();
this.label6 = new System.Windows.Forms.Label();
this.label7 = new System.Windows.Forms.Label();
this.label8 = new System.Windows.Forms.Label();
this.textBox1 = new System.Windows.Forms.TextBox();
this.dataGridView1 = new System.Windows.Forms.DataGridView();
this.tableLayoutPanel1.SuspendLayout();
this.tableLayoutPanel2.SuspendLayout();
this.tableLayoutPanel3.SuspendLayout();
((System.ComponentModel.ISupportInitialize)(this.dataGridView1)).BeginInit();
this.SuspendLayout();
//
// tableLayoutPanel1
//
this.tableLayoutPanel1.Anchor = ((System.Windows.Forms.AnchorStyles)
(((System.Windows.Forms.AnchorStyles.Top — System.Windows.Forms.AnchorStyles.Left)
— System.Windows.Forms.AnchorStyles.Right)));
this.tableLayoutPanel1.ColumnCount = 1;
this.tableLayoutPanel1.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
50F));
this.tableLayoutPanel1.Controls.Add(this.label1, 0, 0);
this.tableLayoutPanel1.Location = new System.Drawing.Point(2, 2);
this.tableLayoutPanel1.Name = ”tableLayoutPanel1”;
this.tableLayoutPanel1.RowCount = 1;
this.tableLayoutPanel1.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent,
50F));
this.tableLayoutPanel1.Size = new System.Drawing.Size(923, 53);
this.tableLayoutPanel1.TabIndex = 0;
//
// label1
//

27

IR@AIKTC aiktcdspace.org

this.label1.AutoSize = true;
this.label1.BackColor = System.Drawing.Color.Teal;
this.label1.Dock = System.Windows.Forms.DockStyle.Fill;
this.label1.Font = new System.Drawing.Font(”Microsoft Sans Serif”, 15.75F, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, ((byte)(0))); this.label1.ForeColor = System.Drawing.Color.White;
this.label1.Location = new System.Drawing.Point(3, 0);
this.label1.Name = ”label1”;
this.label1.Size = new System.Drawing.Size(917, 53);
this.label1.TabIndex = 0;
this.label1.Text = ”RFID based Library Management System”;
this.label1.TextAlign = System.Drawing.ContentAlignment.MiddleCenter;
//
// tableLayoutPanel2
//
this.tableLayoutPanel2.ColumnCount = 1;
this.tableLayoutPanel2.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
50F));
this.tableLayoutPanel2.Controls.Add(this.register, 0, 0);
this.tableLayoutPanel2.Controls.Add(this.addBook, 0, 1);
this.tableLayoutPanel2.Controls.Add(this.button3, 0, 2);
this.tableLayoutPanel2.Location = new System.Drawing.Point(2, 281);
this.tableLayoutPanel2.Name = ”tableLayoutPanel2”;
this.tableLayoutPanel2.RowCount = 3;
this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent,
50F));
this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent,
50F));
this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute,
42F));
this.tableLayoutPanel2.Size = new System.Drawing.Size(200, 124);
this.tableLayoutPanel2.TabIndex = 1;
//
// register
//
this.register.BackColor = System.Drawing.Color.FromArgb(((int)(((byte)(0)))), ((int)(((byte)(64)))),
((int)(((byte)(64)))));
this.register.Dock = System.Windows.Forms.DockStyle.Fill;
this.register.FlatStyle = System.Windows.Forms.FlatStyle.Flat;
this.register.ForeColor = System.Drawing.Color.White;
this.register.Location = new System.Drawing.Point(3, 3);
this.register.Name = ”register”;
this.register.Size = new System.Drawing.Size(194, 35);
this.register.TabIndex = 0;
this.register.Text = ”Register”;
this.register.UseVisualStyleBackColor = false;
this.register.Click += new System.EventHandler(this.register Click);
//
// addBook

28

IR@AIKTC aiktcdspace.org

//
this.addBook.BackColor = System.Drawing.Color.FromArgb(((int)(((byte)(0)))), ((int)(((byte)(64)))),
((int)(((byte)(64)))));
this.addBook.Dock = System.Windows.Forms.DockStyle.Fill;
this.addBook.FlatStyle = System.Windows.Forms.FlatStyle.Flat;
this.addBook.ForeColor = System.Drawing.Color.White;
this.addBook.Location = new System.Drawing.Point(3, 44);
this.addBook.Name = ”addBook”;
this.addBook.Size = new System.Drawing.Size(194, 35);
this.addBook.TabIndex = 1;
this.addBook.Text = ”Add Book”;
this.addBook.UseVisualStyleBackColor = false;
this.addBook.Click += new System.EventHandler(this.addBook Click);
//
// button3
//
this.button3.BackColor = System.Drawing.Color.FromArgb(((int)(((byte)(0)))), ((int)(((byte)(64)))),
((int)(((byte)(64)))));
this.button3.Dock = System.Windows.Forms.DockStyle.Fill;
this.button3.FlatStyle = System.Windows.Forms.FlatStyle.Flat;
this.button3.ForeColor = System.Drawing.Color.White;
this.button3.Location = new System.Drawing.Point(3, 85);
this.button3.Name = ”button3”;
this.button3.Size = new System.Drawing.Size(194, 36);
this.button3.TabIndex = 2;
this.button3.Text = ”Settings”;
this.button3.UseVisualStyleBackColor = false;
//
// tableLayoutPanel3
//
this.tableLayoutPanel3.Anchor = ((System.Windows.Forms.AnchorStyles)(((System.Windows.Forms.AnchorStyles.Top
— System.Windows.Forms.AnchorStyles.Left)
— System.Windows.Forms.AnchorStyles.Right)));
this.tableLayoutPanel3.CellBorderStyle = System.Windows.Forms.TableLayoutPanelCellBorderStyle.OutsetDouble;
this.tableLayoutPanel3.ColumnCount = 10;
this.tableLayoutPanel3.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
7.658643F));
this.tableLayoutPanel3.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
14.55142F));
this.tableLayoutPanel3.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
7.986871F));
this.tableLayoutPanel3.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
22.21007F));
this.tableLayoutPanel3.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
8.533916F));
this.tableLayoutPanel3.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
8.205689F));
this.tableLayoutPanel3.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,

29

IR@AIKTC aiktcdspace.org

7.549234F));
this.tableLayoutPanel3.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
7.877462F));
this.tableLayoutPanel3.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
7.330416F));
this.tableLayoutPanel3.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
10.17505F));
this.tableLayoutPanel3.Controls.Add(this.label4, 0, 0);
this.tableLayoutPanel3.Controls.Add(this.label5, 2, 0);
this.tableLayoutPanel3.Controls.Add(this.label6, 4, 0);
this.tableLayoutPanel3.Controls.Add(this.label7, 6, 0);
this.tableLayoutPanel3.Controls.Add(this.label8, 8, 0);
this.tableLayoutPanel3.Location = new System.Drawing.Point(5, 79);
this.tableLayoutPanel3.Name = ”tableLayoutPanel3”;
this.tableLayoutPanel3.RowCount = 1;
this.tableLayoutPanel3.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent,
100F));
this.tableLayoutPanel3.Size = new System.Drawing.Size(917, 55);
this.tableLayoutPanel3.TabIndex = 2;
//
// tableLayoutPanel4
//
this.tableLayoutPanel4.Anchor = ((System.Windows.Forms.AnchorStyles)(((System.Windows.Forms.AnchorStyles.Top
— System.Windows.Forms.AnchorStyles.Left)
— System.Windows.Forms.AnchorStyles.Right)));
this.tableLayoutPanel4.CellBorderStyle = System.Windows.Forms.TableLayoutPanelCellBorderStyle.OutsetDouble;
this.tableLayoutPanel4.ColumnCount = 5;
this.tableLayoutPanel4.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
20F));
this.tableLayoutPanel4.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
20F));
this.tableLayoutPanel4.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
20F));
this.tableLayoutPanel4.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
20F));
this.tableLayoutPanel4.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent,
20F));
this.tableLayoutPanel4.Location = new System.Drawing.Point(6, 151);
this.tableLayoutPanel4.Name = ”tableLayoutPanel4”;
this.tableLayoutPanel4.RowCount = 1;
this.tableLayoutPanel4.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent,
100F));
this.tableLayoutPanel4.Size = new System.Drawing.Size(917, 55);
this.tableLayoutPanel4.TabIndex = 3;
//
// label2
//
this.label2.AutoSize = true;

30

IR@AIKTC aiktcdspace.org

this.label2.Font = new System.Drawing.Font(”Microsoft Sans Serif”, 14.25F,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, ((byte)(0)));
this.label2.ForeColor = System.Drawing.Color.FromArgb(((int)(((byte)(0)))), ((int)(((byte)(64)))),
((int)(((byte)(64)))));
this.label2.Location = new System.Drawing.Point(5, 66);
this.label2.Name = ”label2”;
this.label2.Size = new System.Drawing.Size(149, 24);
this.label2.TabIndex = 4;
this.label2.Text = ”Student Details”;
//
// label3
//
this.label3.AutoSize = true;
this.label3.Font = new System.Drawing.Font(”Microsoft Sans Serif”, 14.25F,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, ((byte)(0)));
this.label3.ForeColor = System.Drawing.Color.FromArgb(((int)(((byte)(0)))), ((int)(((byte)(64)))),
((int)(((byte)(64)))));
this.label3.Location = new System.Drawing.Point(8, 139);
this.label3.Name = ”label3”;
this.label3.Size = new System.Drawing.Size(125, 24);
this.label3.TabIndex = 5;
this.label3.Text = ”Book Details”;
//
// label4
//
this.label4.AutoSize = true;
this.label4.Dock = System.Windows.Forms.DockStyle.Right;
this.label4.Font = new System.Drawing.Font(”Microsoft Sans Serif”, 9.75F,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, ((byte)(0)));
this.label4.Location = new System.Drawing.Point(6, 3);
this.label4.Name = ”label4”;
this.label4.Size = new System.Drawing.Size(60, 49);
this.label4.TabIndex = 6;
this.label4.Text = ”RFID No”;
this.label4.TextAlign = System.Drawing.ContentAlignment.MiddleRight;
//
// label5
//
this.label5.AutoSize = true;
this.label5.Dock = System.Windows.Forms.DockStyle.Right;
this.label5.Font = new System.Drawing.Font(”Microsoft Sans Serif”, 9.75F,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, ((byte)(0)));
this.label5.Location = new System.Drawing.Point(216, 3);
this.label5.Name = ”label5”;

31

IR@AIKTC aiktcdspace.org

this.label5.Size = new System.Drawing.Size(51, 49);
this.label5.TabIndex = 7;
this.label5.Text = ”Name :”;
this.label5.TextAlign = System.Drawing.ContentAlignment.MiddleRight;
//
// label6
//
this.label6.AutoSize = true;
this.label6.Dock = System.Windows.Forms.DockStyle.Right;
this.label6.Font = new System.Drawing.Font(”Microsoft Sans Serif”, 9.75F,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, ((byte)(0)));
this.label6.Location = new System.Drawing.Point(479, 3);
this.label6.Name = ”label6”;
this.label6.Size = new System.Drawing.Size(59, 49);
this.label6.TabIndex = 8;
this.label6.Text = ”Roll No :”;
this.label6.TextAlign = System.Drawing.ContentAlignment.MiddleRight;
//
// label7
//
this.label7.AutoSize = true;
this.label7.Dock = System.Windows.Forms.DockStyle.Right;
this.label7.Font = new System.Drawing.Font(”Microsoft Sans Serif”, 9.75F,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, ((byte)(0)));
this.label7.Location = new System.Drawing.Point(637, 3);
this.label7.Name = ”label7”;
this.label7.Size = new System.Drawing.Size(43, 49);
this.label7.TabIndex = 9;
this.label7.Text = ”Year :”;
this.label7.TextAlign = System.Drawing.ContentAlignment.MiddleRight;
//
// label8
//
this.label8.AutoSize = true;
this.label8.Dock = System.Windows.Forms.DockStyle.Right;
this.label8.Font = new System.Drawing.Font(”Microsoft Sans Serif”, 9.75F,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, ((byte)(0)));
this.label8.Location = new System.Drawing.Point(761, 3);
this.label8.Name = ”label8”;
this.label8.Size = new System.Drawing.Size(56, 49);
this.label8.TabIndex = 10;
this.label8.Text = ”Branch :”;
this.label8.TextAlign = System.Drawing.ContentAlignment.MiddleRight;
//
// textBox1

32

IR@AIKTC aiktcdspace.org

//
this.textBox1.Location = new System.Drawing.Point(6, 214);
this.textBox1.Name = ”textBox1”;
this.textBox1.Size = new System.Drawing.Size(193, 20);
this.textBox1.TabIndex = 6;
this.textBox1.Text = ”Search Book...”;
//
// dataGridView1
//
this.dataGridView1.ColumnHeadersHeightSizeMode
=
System.Windows.Forms.DataGridViewColumnHeadersHeightSizeMode.AutoSize; this.dataGridView1.Location
= new System.Drawing.Point(206, 213);
this.dataGridView1.Name = ”dataGridView1”;
this.dataGridView1.Size = new System.Drawing.Size(716, 189);
this.dataGridView1.TabIndex = 7;
//
// Form1
//
this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
this.BackColor = System.Drawing.Color.White;
this.ClientSize = new System.Drawing.Size(927, 407);
this.Controls.Add(this.dataGridView1);
this.Controls.Add(this.textBox1);
this.Controls.Add(this.label3);
this.Controls.Add(this.label2);
this.Controls.Add(this.tableLayoutPanel4);
this.Controls.Add(this.tableLayoutPanel3);
this.Controls.Add(this.tableLayoutPanel2);
this.Controls.Add(this.tableLayoutPanel1);
this.Name = ”Form1”;
this.Text = ”RFID based Library Management System”;
this.Load += new System.EventHandler(this.Form1 Load);
this.tableLayoutPanel1.ResumeLayout(false);
this.tableLayoutPanel1.PerformLayout();
this.tableLayoutPanel2.ResumeLayout(false);
this.tableLayoutPanel3.ResumeLayout(false);
this.tableLayoutPanel3.PerformLayout();
((System.ComponentModel.ISupportInitialize)(this.dataGridView1)).EndInit();
this.ResumeLayout(false);
this.PerformLayout();

}

endregion

private System.Windows.Forms.TableLayoutPanel tableLayoutPanel1;

33

IR@AIKTC aiktcdspace.org

private System.Windows.Forms.Label label1;
private System.Windows.Forms.TableLayoutPanel tableLayoutPanel2;
private System.Windows.Forms.Button register;
private System.Windows.Forms.Button addBook;
private System.Windows.Forms.Button button3;
private System.Windows.Forms.TableLayoutPanel tableLayoutPanel3;
private System.Windows.Forms.Label label4;
private System.Windows.Forms.Label label5;
private System.Windows.Forms.Label label6;
private System.Windows.Forms.Label label7;
private System.Windows.Forms.Label label8;
private System.Windows.Forms.TableLayoutPanel tableLayoutPanel4;
private System.Windows.Forms.Label label2;
private System.Windows.Forms.Label label3;
private System.Windows.Forms.TextBox textBox1;
private System.Windows.Forms.DataGridView dataGridView1;
}
}

Figure 5.1: Add Book Form

34

IR@AIKTC aiktcdspace.org

5.0.2 Main Form

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace Library Management
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
CenterToScreen();
}

private void Form1 Load(object sender, EventArgs e)
{

}

private void register Click(object sender, EventArgs e)
{
RegisterForm rf = new RegisterForm();
rf.Show();
}

private void addBook Click(object sender, EventArgs e)
{
AddBookForm abf = new AddBookForm();

abf.Show();

}
}
}

35

IR@AIKTC aiktcdspace.org

Figure 5.2: Main Form

Figure 5.3: Register Form

36

IR@AIKTC aiktcdspace.org

References

• http://www.ijareeie.com/upload/2015/april/17A 087 Annaraman.pdf.

• https://pdfs.semanticscholar.org/de2b/5111888f2b6f51c756d2d2c6744afae1de87.pdf

• http://www.nskelectronics.com/em-18 rfid reader.html

• T. Taleb and A. Kunz, “Machine Type Communications in 3GPP Networks: Po-
tential Challenges, and Solutions”, to appear, IEEE Commun.

37

IR@AIKTC aiktcdspace.org

