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COMPUTER ADDED DRUG DESIGN SUCCESS AND LIMITATION

1. Abstract

Modern drug discovery is characterized by the production of vast quantities of compounds and
the need to examine these huge libraries in short periods of time
The need to store, manage and analyze these rapidly increasing resources has given rise to the
field known as computer-aided drug design (CADD).

CADD represents computational methods and resources that are used to facilitate the design
and discovery of new therapeutic solutions.

Digital repositories, containing detailed information on drugs and other useful compounds, are
goldmines for the Study of chemical reactions capabilities. Design libraries, with the potential to
generate molecular variants in their entirety, allow the selection and sampling of chemical
compounds with diverse characteristics.

Structure-based drug design and ligand-based drug design

are two methods commonly used in computer-aided drug design. In this article, we discuss the
theory behind both methods, as well as

their successful applications and limitations.
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2. Background
Developing new drugs is a very expensive and time-consuming process that dates back
millions of years to when only herbal remedies were in use [1]. Drugs with synthetic/semi-
synthetic origins only came into existence in the last century [2]. Compounds developed prior
to this time were not very effective in terms of potency or safety, and must therefore be
optimized. In the era of trial-and-error processes, rational strategies were developed to
improve the potency of compounds [3-6]. In the 1980s, the use of computers was extended
from data handling to a more prominent role in drug discovery [7]. The use of computers in the
field of pharmaceutical research is typically designated as computer-aided drug design (CADD)
[8, 9]; although it is also referred to as computer-assisted molecular design (CAMD). CADD
methods have emerged as an effective tool for drug discoveries. CADD is a specialized
discipline that uses computational methods to simulate drug receptor interactions to
determine if a given molecule will bind to a target, and if so, what its affinity would be [10]. This
method has become the most widely used technique to significantly decrease the number of
potential medicinal compounds from a large library by predicting which will be inactive and
active. This method requires significantly less cost and time for high throughput screening
without compromising the quality of lead discovery. Binding of ligands to the receptor may
occur via hydrophobic, electrostatic, and hydrogen-bonding interactions [11]. In addition,
solvation energies of the ligand and receptor site also play major roles in this process because
partial to complete desolvation must occur prior to binding [12]. There are two major types of
drug design techniques: ligand-based drug design (LBDD) and structure-based drug design

(SBDD).
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SBDD is used when the three-dimensional structures of target proteins are available, while
LBDD design is employed in cases in which the structures are unknown. CADD methods are
dependent on bioinformatics tools, applications and databases [13]. MD simulation has
become one of the most influential tools to predict the conformation of small molecules, as
well as for modelling conformational changes within a biological target upon binding by small
molecules [14, 15]. Semi-empirical methods such as ab initio methods or density functional
theory are most often used to provide the expected opt(electrostatic potential, polarizability,
etc.) of the drug candidate that influence its binding affinity [16]. The advantages of using
CADD in drug discovery include: a) cost savings; b) time-to-market, the predictive power of
CADD facilitates selection of promising lead candidates, thereby preventing time from being
wasted on dead end compounds; c) better insight, one of the intangible benefits of CADD is the
deep insight that researchers acquire into drug receptor interactions. Computer-aided drug
design may be used to identify hits using structure or ligand-based virtual screening,
optimization of hit-to-lead for affinity and selectivity (SBDD, LBDD, etc.) and optimization of the
other pharmaceutical properties of leads while maintaining its affinity. Fig. 1 shows different
methods used in CADD. In this review, we provide detailed information regarding different
methods used in CADD, as well as some of their major successes and limitations imized
parameters for molecular mechanics calculations and to estimate important electronic

properties
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3. Introduction

Computer aided drug design (CADD) provides several tools and techniques that helps in
various stages of drug design thus reducing the cost of research and development time of the
drug. Drug discovery and developing a new medicine is a long, complex, costly and highly risky
process that has few peers in the commercial world. This is why computer-aided drug design
(CADD) approaches are being widely used in the pharmaceutical industry to accelerate the
process. The cost benefit of using computational tools in the lead optimization phase of drug
development is substantial. The cost and time invested by the pharmacological research
laboratories are heavy during the various phases of drug discovery, starting from therapeutic
target identification[1,2] , candidate drug discovery, drug optimization through pre clinical and
extensive clinical experiments to assess the
effectiveness and safety of newly developed drugs. The major pharmaceutical companies have
invested heavily in the routine ultra-High Throughput Screening (UHTS) of vast numbers of drug-
like' molecules. [3,4] In parallel with this, drug design and optimization increasingly uses
computers for virtual screening. [5-7] Recent advancements in DNA microarray experiments
explore thousands of genes involved in a disease can be used for gaining in depth knowledge
about the disease targets, metabolic pathways and toxicity of the drugs. [8] The theoretical
tools include empirical mo-lecular mechanics, quantum mechanics and, more recently,
statistical mechanics. This latest advance has permitted explicit solvent effects to be
incorporated. All this work is the availability of high quality computer graphics, largely supported

on workstations . [9]
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Two distinct categories of research are clearly distinguishable 1) Crystallography, NMR or
homology modelling. A detailed molecular structure of the target macromolecule, the drug
receptor, is known from x-ray. 2) Variable activity of otherwise similar molecules. The target
receptor binding site has properties which can only be inferred from a knowledge of the both
these types of approach. Drug Discovery Process Drug discovery is a series of processes
which when followed identify the drug compounds for the effective treatment or control of

disease targets. It starts with the screening of large number of chemical compounds

to optimize the disease targets. It requires insight information about the structure of the drug
receptor so that the drug molecules can be adjusted to the binding site.

Figure 1: Drug Discovery Process
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Drug discovery process starts with understanding the disease for which the drug to be designed. It
consists of the following steps.

1. Candidate Drug Discovery
e Selection of Therapeutic Target
e [Lead Discovery

e Lead Optimization

2. Pre clinical and clinical trials to evaluate the safety, efficacy and adverse effects of the drug
e Animal Studies

e Clinical Trials

3. FDA approval process for the newly discovered drug and bringing the drug to market for
public use.

e Additional post marketing testing

e Furtherimprovement of the drug.
In general, it takes 3-6 years for new drug discovery and pre-clinical development. The clinical trials
can last up to 10 years or more before the product reaches the market.[10] Approximately it takes
12-15 years and costsmore than $1.3 billion to bring a successful drug to market.[110n an average,
among the 5000-10000 screened compounds about 250 compounds are selected for preclinical
trials. From them only 5 survive to enter into clinical trials while only one approved by the FDA after

strenuous review of the newly discovered drug.

CADD Strategies in the Drug Discovery Process

Strategies for CADD vary depending on the extent of structural and other information available
regarding the target (enzyme/receptor) and the ligands. —Direct|| and —indirect| design are the two
major modeling strategies currently used in the drug design process. In the indirect approach the
design is based on comparative analysis of the structural features of known active and inactive
com- pounds. In the direct design the three- dimensional fea-tures of the target (enzyme/receptor)

are directly con- sidered.
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Preparation of a Target Structure

Success of virtual screening depends upon the amount and quality of structural information
known about both the target and the small molecules being docked. The first step is to
evaluate the target for the presence of an appropriate binding pocket.[12-13] This is usually
done through the analysis of known target-ligand co-crystal structures or using in-silico

methods to identify novel binding sites.[14]

A target structure experimentally determined through X-ray crystallography or NMR techniques
and deposited in the PDB is the ideal starting point for docking. Structural genomics has
accelerated the rate at which target structures are being determined. In the absence of
experimentally determined structures, several successful virtual screening campaigns have

been reported based on comparative models of target proteins[15-17]
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Homology Modeling

In the absence of experimental structures, computational methods are used to predict the 3D
structure of target proteins. Comparative modeling is used to predict target structure based on

a template with a similar sequence, leveraging that protein structure is better conserved than
sequence, i.e., proteins with similar sequences have similar structures. Homology modeling is a
specific type of comparative modeling in which the template and target proteins share the same
evolutionary origin. Comparative modeling involves the following steps: (1) identification of related
proteins to serve as template structures, (2) sequence alignment of the target and template
proteins, (3) copying coordinates for confidently aligned regions, (4) constructing missing atom
coordinates of target structure, and (5) model refinement and evaluation. Fig. 1.4 illustrates the
steps involved in homology modeling. Several computer programs and web servers exist that
automate the homology modeling process e.g., PSIPRED[18] and MODELER.[19]

Molecular dynamics-based detection

The dynamic nature of biomolecules sometimes makes it insufficient to use a single static
structure to predict putative binding sites. Multiple conformations of target are often used to
account for structural dynamics of target. Classic molecular dynamic (MD) simulations can be
used for obtaining an ensemble of target conformations beginning with a single structure. The MD
method uses principles of Newtonian mechanics to calculate a trajectory of conformations of a
protein as a function of time. Classic MD methods tend to get trapped in local energy minima. To
overcome this, several advanced MD algorithms such as targeted- MD20], conformational folding
simulationsi21], temperature accelerated MD simulations(22], and replica exchange MDj23] have been

implemented for traversing multiple minima energy surface of proteins.

ir.aiktclibrary.org 9



IR@AIKTC-KRRC

identify template structure

Target sequence Template

align sequence to template

structure ..pmllihvaaqgiasgmrylat..

|

Sequence alignment

template structure

loop bunldmg and model

building template sequence ..vvilymatqgissamevylek..

target sequence pmillhvaagiasgmrylat..

l

Homology model

thread sequence onto the ]

evaluate the models

model
ok?

Yes

Figure: 1.4 Steps involved in homology model building process.38-39

Monte Carlo Search with Metropolis Criterion (MCM) Simulations

MCM samples conformational space faster than molecular dynamics in that it requires only energy
function evaluation and not the derivative of the energy functions. Although traditional MD drives a
system toward a local energy minimum, the randomness introduced with Monte Carlo allows
hopping over the energy barriers, preventing the system from getting stuck in local energy minima.

MCM simulations have been adopted for flexible docking applications such as in MCDOCK .[24]

Genetic Algorithms

Genetic algorithms introduce molecular flexibility through recombination of parent conformations
to child conformations. In this simulated evolutionary process, the —fittest| or best scoring
conformations are kept for another round of recombination. In this way, the best possible set of
solutions evolves by retaining favorable features from one generation to the next. In docking, a set
of values that describe the ligand pose in the protein are state variable. State variables may include

set of values describing translation, orientation, conformation, number of hydrogen bonds, etc.
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The state corresponds to the genotype; the resulting structural model of the ligand in the protein
corresponds to the phenotype, and binding energy corresponds to the fitness of the individual.
Genetic operators may swap large regions of parent’'s genes or randomly change (mutate) the
value of certain ligand states to give rise to new individuals. Genetic Optimization for Ligand
Docking (GOLD)[25] explores full ligand flexibility with partial target flexibility using a genetic
algorithm.

Scoring Functions for Evaluation of Protein Ligand Complexes
Docking applications need to rapidly and accurately assess protein-ligand complexes, i.e.,
approximate the energy of the interaction. A ligand docking experiment may generate hundreds of

thousands of target-ligand

complex conformations, and an efficient scoring function is necessary to rank these complexes

and differentiate valid binding mode predictions from invalid predictions.

Force-Field or Molecular Mechanics-Based Scoring Functions

Force-field scoring functions use classic molecular mechanics for energy calculations.26] These
functions use parameters derived from experimental data and ab initio quantum mechanical
calculations. The binding free energy of protein-ligand complexes are estimated by the sum of van
der Waals and electrostatic interactions. DOCK uses the AMBER force fields in which van der

Waals energy terms are represented by the Lennard- Jones potential
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Knowledge-Based Scoring Function

Knowledge based scoring functions use the information contained in experimentally determined
complex structures. They are formulated under the assumption that interatomic distances
occurring more often than average distances represent favorable contacts. On the other hand,
interactions that are found to occur with lower frequencies are likely to decrease affinity. Several

knowledge based potentials have been developed to predict binding affinity like potential of.

Consensus-Scoring Functions

Consensus approaches rescore predicted poses several times using different scoring functions.
These results can then be combined in different ways to rank solutions.[31] Some strategies for
combining scores include (1) weighted combinations of scoring functions, (2) a voting strategy in
which cut-offs established for each scoring method is followed by decision based on number of
poses a molecule has, (3) a rank by number strategy ranks each compound by its average
normalized score values and (4) a rank by rank method sorts compounds based on average rank

determined by individual scoring functions.[32]

Structure-Based Virtual High-Throughput Screening

Structure-based virtual high-throughput screening (SB-vHTS), the in silico method for identifying
putative hits out of hundreds of thousands of compounds to the targets of known structure, relies
on a comparison of the 3D structure of the small molecule with the putative binding pocket. SB-
VHTS selects for ligands predicted to bind a particular binding site as opposed to traditional HTS
that experimentally asserts general ability of a ligand to bind, inhibit, or allosterically alter the
protein’s function. To make screening of large compound libraries within finite time feasible. SB-
VHTS often uses limited conformational sampling of protein and ligand and a simplified
approximation of binding energy that can be rapidly computed. The key steps in SB-vHTS are: (1)
preparation of the target protein and compound library for docking, (2) determining a favorable

binding pose for each compound and (3) ranking the docked structures.[33]
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Ligand-Based Computer-Aided Drug Design

The ligand-based computer-aided drug discovery (LBDD) approach involves the analysis of ligands
known to interact with a target of interest. These methods use a set of reference structures
collected from compounds known to interact with the target of interest and analyse their 2D or 3D

structures. The overall goal is to

for novel compounds possessing the biological activity of interest, hit-to-lead and lead-to drug
optimization, and also for the optimization of DMPK/ADMET properties. LBDD is based on the
similar property principle which states that molecules that are structurally similar are likely to have
similar properties.[34] LBDD approaches in contrast to SBDD approaches can also be applied when
the structure of the biological target is unknown. Additionally, active compounds identified by ligand
-based virtual high-throughput screening (LB-vHTS) methods are often more potent than those
identified in SB-Vhts.[35] represent these compounds in such a way that the physicochemical

properties most important for their desired

interactions are retained, whereas extraneous information not relevant to the interactions is
discarded. It is considered as an indirect approach to the drug discovery in that it does not
necessitate knowledge of the structure of the target of interest. The two fundamental approaches
of LBDD are (1) selection of compounds based on chemical similarity to known actives using
some similarity measure or (2) the construction of a quantitative structure -activity relationship

(QSAR) model that predicts biological activity from chemical structure.
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Molecular Descriptors

Molecular descriptors can include properties such as molecular weight, geometry, volume, surface
areas, ring content, rotatable bonds, interatomic distances, bond distances, atom types, planar and
nonplanar systems,indices, functional group composition, aromaticity indices, solvation properties,
and many others.[36] These descriptors are generated through knowledge-based, graph-theoretical
methods, molecular mechanical, or quantum-mechanical tools{zz-3s] and are classified according to
the dimensionality| of the chemical representation from which they are computedizs): 1-
dimensional (1D), scalar physicochemical properties such as molecular weight; 2D, molecular
constitution-derived descriptors; 2.5D, molecular configuration-derived descriptors; 3D, molecular
conformation-derived descriptors. These different levels of complexity, however, are overlapping

with the more complex descriptors, often incorporating information from the simpler ones.
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Docking

Docking is the computational determination of binding affinity between a protein structure and
a ligand. This method involves proficient sampling of all possible poses of the ligand in the
binding pocket of the target protein to ease optimal binding geometry, as measured by the
defined scoring functions [39, 41]. Docking of small molecules is generally performed in one of
three ways: (a) rigid docking, in which the target and ligand are treated as rigid; (b) flexible
ligand docking, in which the target is held rigid; or (c) flexible docking, in which both the target
and ligand are considered flexible [42]. Molecular docking protocols can also be defined as a
blend of a search algorithm and a scoring function [43-46]. Many scoring functions and
algorithms are currently available. The search algorithm is supposed to provide support and
freedom to the protein- ligand coordination to enable accurately and sufficient sampling,
including the binding modes. Logically, the search algorithm is supposed to have good speed
and effectiveness, while the scoring function must be able to analyze physicochemical
properties of molecules and thermodynamics of interaction. The complexity of docking
increases in the order of rigid docking, flexible ligand docking, and flexible docking [47]. A
reliable docking algorithm should exhaustively search all possible binding modes between the
ligand and target; however, this is impractical because of the large size of the search space.
Therefore, constraints, restraints, and approximations are applied to reduce the dimensionality
of the problem in an attempt to locate the global minima as efficiently as possible. Since large
conformational space is available to protein structures, partial flexibility (side chain) has
recently been incorporated into some docking algorithms, e.g., GLIDE [37], GOLD [38],
AUTODOCK [48], FlexX [49], etc. Genetic algorithms (AUTODOCK, GOLD) and Monte Carlo
simulated annealing algorithms (GLIDE) are widely used. The genetic algorithm is an iterative
process that sustains a population of individuals that are candidates of the solutions to the
problem being elucidated. However, simulated annealing is an iterative procedure that

constantly apprises one candidate solution until it reaches a termination condition [50].
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Pharmacophore

A pharmacophore is the ensemble of steric and electronic features including 1D (physical or

biological properties), 2D (substructures) and 3D (charged/ionizable groups, hydrophobic

groups, and hydrogen
bond acceptors/donors) aspects that are necessary to ensure the optimal supramolecular interactions
with a specific biological target structure and considered to be responsible for a desired biological activity
[51- 56]. The concept of a pharmacophore has become an important tool in CADD. In a pharmacophore,
each atom that exhibits certain properties related to molecular recognition is bridged to a pharmacophore
feature. These molecular features are labeled hydrogen bond donors (HBD), hydrogen bond acceptors
(HBA), hydrophobic aromatics, etc. [57]. Pharmacophore fingerprinting compares different molecules at
the pharmacophore level. When only a few pharmacophore features are considered in a 3D model, the
pharmacophore is sometimes described as a query. A pharmacophore model can be established in both
ligand-based and structure-based manners. In the ligand-based approach, this method can be used by
superposing a set of active molecules and extracting the common essential chemical features required
for their bioactivity. In SBDD, this approach can be used by probing possible interaction points between
the target protein and ligands. Pharmacophore techniques have been used extensively in virtual screening,
de novo design, lead optimization, multitarget drug design, etc. With advances in computational chemistry,
a large number of automated tools have been developed and made available for pharmacophore

modeling.
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Pharmacophore/Ligand Based Virtual Screening (PBVS/LBVS)

Pharmacophore based virtual screening (PBVS) uses a pharmacophore modeling approach to
screen large databases to identify molecules of desired biological effects. To accomplish this,
a query (pharmacophore model) that encodes the correct 3D organization of the required
interaction pattern in the most likely manner is created. Different options are available for
constructing a pharmacophore

model (query) depending on the information available for the particular protein target.
Examples of some programs that perform pharmacophore based searches include UNITY [58],
MACCS-3d [59], Catalyst [60], PHASE [62], and ROCS [63]. Table 1 shows some of the major
tools used in LBDD. In general, PBVS is conducted in two consecutive steps, checking the
atom type and/or functional group required by the pharmacophore and checking whether the
spatial arrangement of these compounds matches these queries [64]. PBVS is superior to
SBVS with respect to its ability to screen multi-conformational databases consisting of
millions of compounds in comparatively less time and yielding high quality and structurally
diverse hits/leads [65]. Moreover, the production of several false positive hits/leads has been a
major obstruction to both PBVS and SBVS based drug discovery processes. Poor identification
of important physicochemical parameters is one possible reason for the failures of both PBVS
and SBVS [66].

Scoring Functions: Concept and Application

Scoring function is the most important component in structurebased drug design for
evaluating the efficacy of ligands binding to their target proteins [67]. In molecular docking
experiments, protein-ligand complexes need to be rapidly and accurately assessed [68]. As
molecular docking experiments generate  thousands of ligand binding
orientations/conformations, scoring functions are used to rank these complexes and
differentiate the accurate binding mode predictions from inaccurate predictions [69, 70,

71].
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The goal of an ideal scoring function is to rank the complex as determined empirically [72].
Additionally, the scoring function should be able to predict the absolute binding affinity of the
complex to facilitate identification of the potential hits/lead candidates against any therapeutic
target from a large library of compounds as used in virtual screening. Scoring functions are
very helpful to screening libraries of compounds or individual compounds based on their
binding mode and affinity. Over the years, various scoring functions that exhibit different
accuracies and computational efficiencies have been developed [73]. In this section, we briefly
review the scoring functions in literature developed for protein-ligand interactions in molecular
docking. Fig. 2 shows different scoring functions currently in use. Scoring functions have been
categorized into four different types:

1. Force-field or molecular mechanics-based scoring functions.

2. Empirical scoring functions.

3. Knowledge-based scoring functions.

4. Consensus scoring functions.

Force-Field or Molecular Mechanics-Based Scoring Functions

Classic molecular mechanics are used by force-field scoring functions for energy calculations
[74]. These scoring functions use various physical features such as van der Waals (VDW)
interactions, electrostatic interactions, and bond stretching/bending/torsional forces. Force-
field or molecular mechanics-based scoring functions utilize parameters derived from both
experimental and ab initio quantum mechanical calculations [75]. These scoring functions
estimate the binding free energy of protein-ligand complexes by the sum of the van der Waals
(VDW) interactions and electrostatic interactions [76]. Despite its various successful
applications, a major challenge associated with force field scoring functions is their inability to
treat solvent molecules in ligand binding [77]. To overcome this shortcoming, variables from
the empirical scoring functions are often taken into consideration along with force-field

functions.
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Empirical Scoring Functions

These scoring functions are based on counting the number of different types of interactions
between two binding partners [78, 79]. These functions count the number of atoms within a
ligand and receptor that are in contact with each other or calculate changes in the solvent
accessible surface area (_SASA) in the complex and the uncomplexed structure of the protein
and ligand. These interaction terms of the function may include favorable contacts
(hydrophobichydrophobic), unfavorable contacts (hydrophobic- hydrophilic), favorable
contributions to affinity (especially if shielded from solvent), no contribution if solvent exposed
(number of hydrogen bonds), and unfavorable conformational entropy contribution (number of

rotatable bonds immobilized in complex formation).

Knowledge-Based Scoring

This scoring function attempts to capture knowledge about the receptor (target) - ligand
binding available in the protein data bank (PDB) by statistical analysis of structural data alone
[80-81]. Frequency of

occurrence of individual contacts is assumed to measure their energetic contribution to the
binding. A specific contact that occurs more frequently than an average or random distribution
indicates

attractive interaction, whereas less frequent occurrence indicates repulsive interaction, e.g.,

PMF score (potentials of mean force) [82].
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Consensus Scoring Function
Despite the availability of some good scoring functions, consensus scoring functions have
been developed. Every scoring function currently in use has some limitations and advantages.
The consensus scoring function was developed while considering the advantages of different
scoring functions to achieve high accuracy [83]. Consensus scoring functions, which are the
most advanced scoring technique, improve the probability of finding the correct solution via a
combination of different scoring functions [84]. The best aspect of consensus scoring
functions is their ability to score predicted binding poses using different scoring functions [85].
Commonly used consensus scoring strategies include: (1) Weighted combinations of scoring
functions, vote by number strategy. (2) Vote by number strategy in which a cutoff value is
established for each scoring method used and the final decision is made based on the number
of passes a molecule has (3) Rank by number strategy in which each compound is ranked by
its average normalized score. (4) Rank by rank strategy in which the compounds are sorted on

the basis of their average rank and predicted by individual scoring functions.

Molecular Dynamics

Molecular dynamics simulation, also referred as MD, is one of the principal tools for the
theoretical study of biological molecules [86]. In MD, Newtonian mechanics are applied to
calculate the trajectory of a system [87]. However, standard MD methods depend on the initial
conformation and are not inherently suitable for simulation of ligand-target interactions [88].
This results in MD being

unable to cross the high-energy barricades within the simulation’s lifespan and prevents it
from efficiently traversing the rough surface of protein in complex with ligand. Simulated
annealing strategies are applicable for more efficient use of MD in docking [89]. This process
computationally calculates the behavior of a molecular system with respect to time. A great
deal of detailed information regarding the variations and conformational changes within
proteins and nucleic acids has been provided by molecular dynamics. These computational
methods are now commonly used to investigate the dynamics behavior of biological
molecules and their complexes [90]. These methods are also widely applied to determine

structures from x-ray crystallography and NMR experiments.
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Tool Year Technique used Important feature Availability References
CoMFA (Comparative . 3D QSAR technique based on data from known :
_ P N 1988 Molecular field based Q I_ E Commercial [128]
Molecular Field Analysis) active molecules
APOLLO (Automated 1989 Identification of interaction points belonging to the Available upon
PharmacOphore Location Feature-based method | receptor site and creating a pseudo receptor from a request (Not [129]
through Ligand Overlap) set of ligands Commercialized)
ALADDIN 1989 NA 3D database searching method NA [130]
Bron-
Each molecule is characterized by ligand points
DISCO 1993 sh clique- ) . - Commercial 131
Kcrl?mh Chql‘lc and site points. 121
detection algorithm
XED (extended el s B g Ficld peints arc used as simple and effective de-
D (extended electron Tolecular field basec o - ; } ; :
T 1994 scriptions of the electrostatic and van der Waals Commercial [132]
distribution) method - :
maxima and minima surrounding a molecule
COMSIA (Comparative : Worked on the concept of COMEA with an extra
Molecular ficld based 1 . ] . .
Molecular Similarity 1994 A feature of the use of Gaussian-type physicochemi- Commercial [133]
4 metho j
Indices Analysis) cal properties
Takes into consideration both conformationalde- Not available
Apex-3D 1995 Feature-basced method | pendent structural parameters and physicochemical' | (replaced by Cata- [134]
properties lyst)
e 3 Uses genetic algorithms for pharmacophore identi-

GASP (Genetic Algorithm . ¥ ) i : r i
Similarity P ) 1995 Atom-based method fication. Automatically allows conformational Commercial [135]
Similarity Program = |

S flexibility and maps features among molecules
) Uses pruned exhaustive search "
HipHop 1996 Feature-based method .. i Commercial [136]
to identify common features
MOE (Molecular Operat- Property- Pharmacophoric structural features are represented F ;
. , ' 2004 e b i Comnicreial [137]
g Environment) based algorithm by labeled points in space
Uses fine-grained conformational sampling and a
PHASE 2006 Feature-basedmethod range of scoring techniques Commercial [138]
to identify common pharmacophore hypotheses
Allows identification of hypotheses that are com-
mon to the active molecules ]
HypoGen 2000 Feature-based method } . ; ity Commercial [139]
in the training set. but not present in the inactive
molecule
Pat ichi Model 3D pharmacophore models from structural
. - attern-matching : : : = ;
LigandScout 2004 " g data of macromolecule/ligand complexes or from Commercial [140]
hase ¥ : :
training and test scis of organic molecules
ROCS (Rapid Overlay of L Molecular field based Perceive similarity between molecules based on . )
. N i - 2005 ) ) ) Commercial [141]
Chemical Structures) method their three-dimensional shape.
First Webserver for elucidating 3D pharmacopho-
PharmaGist 2008 Feature-based method res from a set of drug-like molecules that are Free access [142]

known to bind to a target receptor
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SOFTWARE FOR GENERAL PURPOSE MOLECULAR MODELING [ 40]
For workstations, minicomputers, and supercomputers (SGI, Sun, Cray, etc.)

» AMBER—Peter Kollman and coworkers, UCSF.

» Computer assisted model building, energy minimiza-tion, molecular dynamics, and

free energy perturbation calculations.

» Midas Plus—UCSF Computer Graphics Laboratory.

» CHARMM—Martin Karplus and cowrokers, Har- vard.

» QUANTA/CHARMmM—Molecular Simulations Inc. (MSI) molecular/drug design,
QSAR, quantum chemis- try.

» X-ray & NMR data analysis Insight/DISCOVER— Biosym, Inc. Now MSI and Biosym
became Accelrys Inc.

» SYBYL—Tripos, Inc.

» ECEPP—Harold Scheraga and coworkers, Cornell

» MM3—Norman Allinger and coworkers, Georgia For personal computers (Apple,
Compagq, IBM, etc.)

» Alchemy lI—Tripos, Inc.

» Desktop Molecular Modeller—Oxford Elec. Publish- ing Molecular Modeling
Pro— WindowChem Software Energy minimization, QSAR (surface area,
volume, logP), etc.

» PC MODEL—Serena Software.
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Success Story of CADD
There is very large list describing the successful applications of CADD in the development of
novel and potent drug candidates in drug discovery. The development of drugs for HIV and flu
(influenza) during the 1990s is amongst the greatest acknowledged successful applications of
CADD. Relenza (which treats influenza and was a predecessor to Tamiflu) and HIV protease
inhibitors are the two most successful outcomes of CADD [91-92]. Relenza is a neuraminidase
inhibitor that was licensed to GlaxoSmithKline Inc. (GSK) in 1990 and approved by the FDA in
1999 [93]. HIV protease inhibitors were developed several years before the neuraminidase
inhibitors, but Relenza was approved first owing to the pressing medical need. The first HIV
protease inhibitor, ritonavir, was synthesized with adequate oral bioavailability in 1991 [94].
The FDA approved this compound in 1996, in record time (72 days).
This drug required eight years for development, which is about half that of a typical drug. This
achievement was due to application of a structure-based approach and the FDA's rapid review.
A number of other HIV proteases were identified around the same time, including saquinavir
(Roche) and nelfinavir (developed by Agouron, now a subsidiary of Pfizer) [95, 96]. These drugs
helped transform the treatment of HIV. A large number of drugs identified using CADD already
existed in the form of patent medicines. Captopril, the angiotensin- converting enzyme (ACE)
inhibitor, is an antihypertensive drug that was approved in 1981 [97]. Dorzolamide, a carbonic
anhydrase inhibitor, was approved in 1995 [98]. Additionally, Saquinavir was approved in 1995
[99], and a combination of three therapeutics for treatment of HIV, Saquinavir, Indinavir and
Ritonavir was approved in 1996 [100]. Tirofiban, a fibrinogen antagonist that was approved in

1998 [101], and zanamivir, oseltamivir, aliskiren, boceprevir, nolatrexed,

and rupintrivirare are also the results of CADD [102]. A recent study by Kokkonen et al. reported
the successful use of CADD for identification of inhibitors of Sirtuins, a NAD dependent
deacetylase and well-known drug target in neurodegenerative diseases and cancer [102-110].
Another recent successful application of CADD was reported against tuberculosis when a
combination of LBDD, SBDD and MD simulation studies were used. The outcome of this study
was the identification of a novel and very potent inhibitor (NRB04248) of mycobacterium
tuberculosis. This compound was found to have the potential to inhibit PknG (an attractive
drug target in mycobacterium tuberculosis) without any cytotoxic effects against host
macrophages [111]. CADD has been extremely successful in design and identification of
inhibitors against several important diseases, including cancer [112-120], diabetes [121-129],
MDR [130- 135], and neurodegenerative disorders [136-142]. A list of some successful
inhibitors developed using CADD is given in Table 2.
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List of clinically approved drugs discovered by CADD.

Drug Approved in Year Biological Action References
Captopril 1981 Antihypertensive [143]
Dorzolamide 1995 Carbonic anhydrase inhibitor [144]
indinavir 1996 Human immunodeficiency virus (HIV) [145]
ritonavir 1996 Human immunodeficiency virus (HIV) [145]
Saquinavir 1995 Human immunodeficiency virus (HIV) [145]
Triofiban 1998 fibrinogen [146]
antagonist
Raltegravir 2007 Human immunodeficiency virus (HIV) [147]
Zanamivit 1999 Neuraminidase [148]
inhibitor
Aliskiren 2007 Human renin [149]
inhibitor
Boceprevir phnsc_llI:lil;cztl lri;s' s —llclmlili\ C \:m:—(l IL-\—) ;\:L‘»imr [[143]
Nolatrexed r p];nsc [H elinical lI-'l.lL- L =TI LR Liver :K—_ o [143]
TMI-005 phase Il clinical trials Rheumatoid arthritis [150]
Oseltamivir | 1999 Active against influenza A and B viruses. [151]
LY-517717 : phase II clinical trials Serine protease Inhibitor [150]
NVP-AUY922 phase I clinical trials Inhibitor for HSP90 [152]

CHALLENGES IN CADD

Biological systems are complex and governed by several significant parameters. Accordingly,
there are certain limitations and it is not possible to copy and simulate the complete biological
system on a computer system using state of the art techniques. One of the biggest remaining
challenges in drug discovery is target flexibility. Most molecular docking tools provide high
flexibility to the ligand,
while the protein is kept fixed or provided with limited flexibility to the residues present within or near the
active site. It is very difficult to provide complete molecular flexibility to the protein as this increase the
space and time complexity of the computation [153]. However, efforts are being made to add as many
parameters as possible. Receptor and target molecules are highly flexible in solution because of
conformation changes [154, 159]. Therefore, designing an inhibitor blindly to identify a single, rigid
structure may lead to the wrong result. Docking tools supply enough flexibility to the ligand, with limited

flexibility to the residues near binding sites of protein. Proteins and ligand molecules possess high

flexibility in solution because of their conformational changes [160].
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Therefore, keeping in mind a single, rigid structure while designing inhibitors or drug molecules
may also lead to an incorrect result. Water molecules are considered to play a crucial role in
cellular systems. Accordingly, it is necessary to incorporate the effects of water molecules and
other solvents into docking algorithms [161, 168]. Occasionally, ligand-based investigations
produce a model with a good R square value, indicating it is reliable for prediction. We can then
use this ligand-based model to predict the activities of potent candidates. Unfortunately, most
structure-based results do not seem to be consistent with ligand-based results [169]. It has
been suggested that such differences might be because of the dependence of all virtual
screening methods on databases, even though they can vary greatly for particular targets [170].
In computer-aided drug design, the system is treated by force field models in which the
molecules

are treated as point charges bound by spring-like Lennard-Jones and potential interactions.
Despite providing speed to computation, there are several pitfalls to this method. In this
system, the electronic degrees of freedom (polarization) are neglected and unable to feature
and analyze the breaking of bonds within the systems [171, 174]. Sensitivity to parameters,
neglecting electronic degrees of

freedom (polarization), and inability to model bond breaking are some of the major pitfalls of
the system [175]. Nevertheless, given enough samples, force fields can be used to model
processes including protein- ligand binding and protein folding. One of the major limitations of
pharmacophore based LBDD is its dependence on pre-computed databases that contain a
limited number of low-energy conformations per molecule. This limits the probability of
identifying an active molecule because many conformations are missing; especially those for

rotatable bonds of small functionalities such as are found in hydroxyl groups.
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This restricts the ability of this approach to distinguish between different rotations during the
conformer generation and thus affects sampling [176]. Missing different conformations may
be possible because an active molecule cannot be identified. This is especially true for the
many different conformations of rotatable bonds of small molecular functionalities such as
hydroxyl groups. It is difficult to distinguish between different rotations in terms of root mean
square deviation differences, which affect their proper sampling. There is no clear process for
constructing a pharmacophore query. However, several studies have reported that different
molecules were created for similar targets, i.e., screening a similar dataset produces different

molecules, which were found to be inactive. A previous study reported one example of

the failure of pharmacophores when different pharmacophores were created for similar
targets [177, 179]. Identification of very different molecules from a similar dataset has also
been reported. Another possible shortcoming is identification of kinase inhibitors possessing
similar structures, but different activity profiles against a kinome [180]. Taken together, these
findings indicate that pharmacophore approaches for identifying kinase inhibitors do not
provide a clear picture of their activity against the targeted kinase [181]. It is important to note
that molecular dynamics have several limitations. For example, the method is computationally
very demanding and dependent on the size of the system simulation, with times limited to
hundreds of nanoseconds or a few microseconds at

most [182]. This time period is too short for analysis since the complete folding of a protein
requires a time period ranging from milliseconds to seconds [183]. Accordingly, this limitation

can lead to inadequate sampling of conformations.
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Force-field Scoring
function

Empirical Scoring
function

—  Categories |-

Knowledge based
Scoring function

Consensus Scoring
function

Binding affinity

Scoring Function

- Evaluation Criteria

Binding mode

Different categories and the criteria of evaluations of scoring functions in protein—ligand
interaction. The quality of the force field is an important feature for observation of certain
properties of a system, and it is very important to parameterize force fields for the system. The
force field being used needs to be well parameterized and very accurate to distinguish
between various conformations at different time steps. However, it is not clear if the force-field
being used will attain the accuracy required by the system,
especially when some very crucial effects such as polarization of the atoms by their environment are not
considered based on the electrostatic potential. Classical descriptions of the particles used comprise
another important limitation of MD simulation that restricts investigation of some important quantum

mechanical based phenomena, such as electron transfer or bond breaking/formation.
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CONCLUSION

Overall, there are several reasons to use the modern techniquesof CADD for drug design and
development. Structure-based and ligand-based drug design methods along with molecular
dynamics,simulation studies are the backbone of modern CADD processes. We discussed
several success stories of these techniques and theirlimitations. The clear concept and
advanced knowledge of CADD methods will improve research quality and facilitate
identification of new chemical entities, leading to development of useful drugs.

CADD = Computer-Aided Drug Design
GOLD = Genetic Optimisation for Ligand

Docking HIV = Human Immunodeficiency
Virus
HTS = High Throughput

Screening LBDD = Ligand-based

drug design MD = Molecular

dynamics

PBVS = Pharmacophore based virtual
screening QSAR = Quantitative structure-
activity relationship SBDD = Structure-based
Drug Design (SBDD) SBVS = Structure-based
virtual screening

VS = Virtual Screening
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