"DESIGN AND ANALYSIS OF IC ENGINE PISTON USING COMPOSITE MATERIALS"

Submitted by

SHAIKH ARSHAD	17ME88
SHAIKH RAHIL	17ME95
TAMBOLI NOMAN	17ME76
SARDAR SHOAIB	17ME75

In partial fulfillment for the award of the Degree

Of BACHELOR OF ENGINEERING

IN

MECHANICAL ENGINEERING

UNDER THE GUIDANCE

Of

Prof. MOHD SIRAZUDDIN KHAN

DEPARTMENT OF MECHANICAL ENGINEERING

ANJUMAN-I-ISLAM

KALSEKAR TECHNICAL CAMPUS NEW PANVEL,

NAVI MUMBAI - 410206

UNIVERSITY OF MUMBAI

ACADEMIC YEAR 2020 -2021

ANJUMAN-I-ISLAM KALSEKAR

TECHNICAL CAMPUS NEW PANVEL

(Approved by AICTE, recg. By Maharashtra Govt. DTE,

Affiliated to Mumbai University)

PLOT #2&3, SECTOR 16, NEAR THANA NAKA, KHANDAGAON, NEW PANVEL, NAVI MUMBAI 410206, Tel.: +91 22 27481247/48 * Website: www.aiktc.org

CERTIFICATE

This is to certify that the project titled "Design & Analysis Of IC Engine Piston Using Composite Material"

submitted by

SHAIKH ARSHAD (17ME88)

SHAIKH RAHIL (17ME95)

TAMBOLI NOMAN (17ME76)

SARDAR SHOAIB (17ME75)

of the Kalsekar Technical Campus, New Panvel is a record of bonafide work carried out by him under our supervision and guidance, for partial fulfillment of the requirements for the award of the Degree of Bachelor of Engineering in Mechanical Engineering as prescribed by University Of Mumbai, is approved.

NAVIM

GUIDE

NAME: Prof. Mohd Sirazuddin Khan

HOD

EXTERNAL EXAMINER

SIGNATURE: NAME: Prof. Zakir Ansari

SIGNATURE: SIGNATURE:

NAME: DATE:

ANJUMAN-I-ISLAM'S KALSEKAR

TECHNICAL CAMPUS NEW PANVEL

(Approved by AICTE, recg. By Maharashtra Govt. DTE,

Affiliated to Mumbai University)

PLOT #2&3, SECTOR 16, NEAR THANA NAKA, KHANDAGAON, NEW PANVEL, NAVI MUMBAI 410206, Tel.: +91 22 27481247/48 * Website: www.aiktc.org

APPROVAL OF DISSERTATION

This is to certify that the thesis titled

"Design and analysis of IC Engine using Composite Materials"

submitted by

SHAIKH ARSHAD (17ME88) SHAIKH RAHIL (17ME95) TAMBOLI NOMAN (17ME76) SARDAR SHOAIB (17ME75)

In partial fulfillment of the requirements for the award of the Degree of Bachelor of Engineering in Mechanical Engineering, as prescribed by University of Mumbai is approved.

NAVI MU

(Project Guide)

(External Examiner)

(Prof. Mohd Sirazuddin Khan)

DATE:_____

ACKNOWLEDGEMENT

It is our great pleasure to present this report, a written testimonial of a fruitful experience. It would be unethical on my art to claim complete credit for the project. We therefore take this opportunity to express acknowledgement to all those individuals who helped in making our project a success. First and foremost, we would like to thank **Prof. Zakir Ansari (HOD- Department of Mechanical Engineering)** working with whom is a delightful and wholesome learning experience. Highly indebted to **Prof. Mohd Sirazuddin Khan** for guidance and constant supervision as well as for providing necessary information regarding the project.

We would like to express our sincere gratitude towards our parents and staff of Anjuman-I-Islam's Kalsekar Technical Campus for their kind co-operation and encouragement which help us in completion of this project. They have given us the direction and has made us understand the project better.

NAVI MUMBAI - INDIA

SHAIKH ARSHAD (17ME88)

SHAIKH RAHIL (17ME95)

TAMBOLI NOMAN (17ME76)

SARDAR SHOAIB (17ME75)

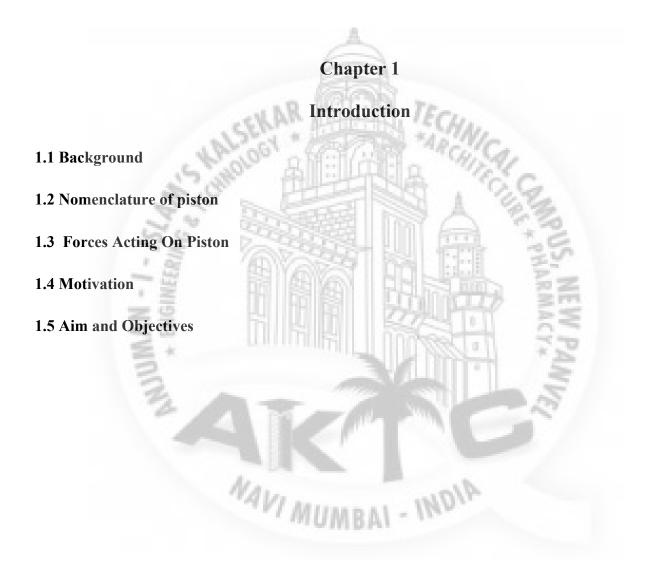
ABSTRACT

The study of this paper is to show how carbon-carbon, AlSiC, & Hyper-eutectic materials can be used as piston material rather than commonly used Aluminum Alloys, Cast Iron, etc. We have carried out Static Structural and Steady State Thermal Analysis using ANSYS WORKBENCH to examine the above mentioned materials under high stresses and dynamic loads. The main aim of our work is to increase the pressure and temperature tolerance of IC Engine piston

Table Of Contents

Table of Contents	
Abstract	i
List Of Tables	
List of Figures	
1.Introduction	1
1.1 Background	2
1.2 Nomenclature of piston	3
1.3 Forces acting on piston	3
1.4 Motivation	4
1.5 Aim and Objective	4
2. Literature Review	5
3. Methodology	8
3.1 Design Consideration	9
3.2 Material Selection	9
3.2.1 Aluminium silicon carbide	9
3.2.2 Carbon-carbon	9
3.2.3 Hyper-eutectic Aluminium	10
3.3 3D modelling and Analysis Of Piston	10
3.4 Static structural Analysis	11
3.5 Steady-state Thermal Analysis	19
Results	28
Conclusion	
References MAVI MUMBAI - WOLA	29
- MUMBAI - W	

List Of Tables


No.	Name	Page No.
1	Loads	11
2	Total Deformation (AlSiC)	11
3	Equivalent Stress (AlSiC)	12
4	Equivalent Strain (AlSiC)	12
5	Static Structural AlSiC Results	13
6	AlSiC constants	13
7	Isotropic Elasticity (AlSiC)	13
8	Total Deformation (carbon-carbon)	14
9	Equivalent Stress (carbon-carbon)	14
10	Equivalent Strain (carbon-carbon)	15
11	Static Structural carbon-carbon Results	15
12	carbon-carbon constants	16
13	isotropic elasticity (carbon-carbon)	16
14	Total Deformation (Hyper-eutectic Aluminium)	16
15	Equivalent stress(Hyper-eutectic Aluminium)	17
16	Equivalent strain (Hyper-eutectic Aluminium)	17
17	Static Structural Hyper-eutectic Aluminium Results	18
18	Hyper-eutectic Aluminium Constants	18
19	Isotropic Elasticity Hyper-eutectic Aluminium	18
20	Temperature Distribution (AlSiC)	19
21	Heat Flux (AlSiC)	20
22	AlSiC Steady-State Thermal Results.	20
23	Temperature Distribution(Carbon-carbon)	21
24	Heat Flux (carbon-carbon)	21
25	Carbon-carbon Steady-State Thermal Results.	22
26	Temperature Distribution (Hyper-eutectic Aluminium).	23
27	Heat Flux (Hyper-eutectic Aluminium).	23
28	Hyper-eutectic Aluminium Steady-State Thermal Results.	24
29	Total Deformation (aluminium).	25
30	Equivalent Stress (aluminium).	25
31	Equivalent Strain (aluminium).	25

No.	Name	Page No.
32	Aluminium static structural results.	26
33	Temperature Distribution (aluminium).	26
34	Heat Flux (aluminium)	27
35	Steady Thermal Results (aluminium)	27

List Of Figures

No.	Name	Page No.
1	Connecting Rod	2
2	Crank shaft	3
3	Piston Assembly	10
4	Total Deformation (AlSiC)	11
5	Equivalent Stress (AlSiC)	12
6	Equivalent Strain (AlSiC)	12
7	Total Deformation (carbon-carbon)	14
8	Equivalent Stress (carbon-carbon)	14
9	Equivalent Strain (carbon-carbon)	15
10	Total Deformation (Hyper-eutectic Aluminium)	16
11	Equivalent stress(Hyper-eutectic Aluminium)	17
12	Equivalent strain (Hyper-eutectic Aluminium)	17
13	Temperature Distribution (AlSiC)	19
14	Heat Flux (AlSiC)	19
15	Temperature Distribution(Carbon-carbon)	21
16	Heat Flux (carbon-carbon)	21
17	Temperature Distribution (Hyper-eutectic Aluminium)	22
18	Heat Flux (Hyper-eutectic Aluminium).	23
19	Total Deformation (aluminium).	24
20	Equivalent stress (aluminium).	25
21	Equivalent strain (aluminium).	25
22	Temperature Distribution (aluminium).	26
23	Heat flux (aluminium).	27
	NAVI MUMBAL - INDIA	

CHAPTER 1

INTRODUCTION

1.1 Background:

In an automobile engines, when the air-fuel mixture burn in combustion chamber, the gas exerts pressure on the piston crown and the piston transmits this force to the crankshaft converting reciprocating action into rotory motion. A piston is a moving disk enclosed in a cylinder which is made gas-tight by piston rings. We have a tight fit between the cylinder and piston because during combustion we have high pressure and if it is not tightly fit we might loose some energy which will affect the performance of the engine. The disk moves inside the cylinder as a liquid or gas inside the cylinder expands and contracts. A piston aids in the transformation of heat energy into mechanical work and vice versa. Because of this, pistons are a key component of heat engines. Piston is connected to the connecting rod with the help of gudgeon pin/piston pin this connecting rod connects piston to the crankshaft where it is attached to the crankpin and thus piston is connected to transmit function of the piston of an internal combustion engine is to receive the impulse from the expanding gas and to transmit the energy to the crankshaft through the connecting rod. The piston must also disperse a large amount of heat from the combustion chamber to the cylinder walls. The engine where the conversion of thermal energy to mechanical energy takes place due to reciprocating piston is called as reciprocating engine.

Fig. 1 Connecting Rod

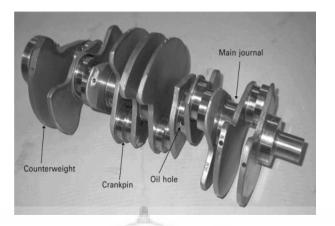


Fig. 2 Crank shaft

1.2 Nomenclature Of Piston

The piston of internal combustion engines consists of the following parts:

<u>Piston Head/Crown</u>: The piston head or crown may be flat, convex or concave depending upon the design of combustion chamber. It withstands the pressure of gas in the cylinder.

Piston Rings: The piston rings are used to seal the cylinder in order to prevent leakage of the gas past the piston.

<u>Piston Skirt:</u> The skirt acts as a bearing for the side thrust of the connecting rod on the walls of the

cylinder.

Piston Pin: It is called a gudgeon pin or wrist pin. It is used to connect piston to the connecting rod

INDIA

1.3 Forces Acting On Piston:

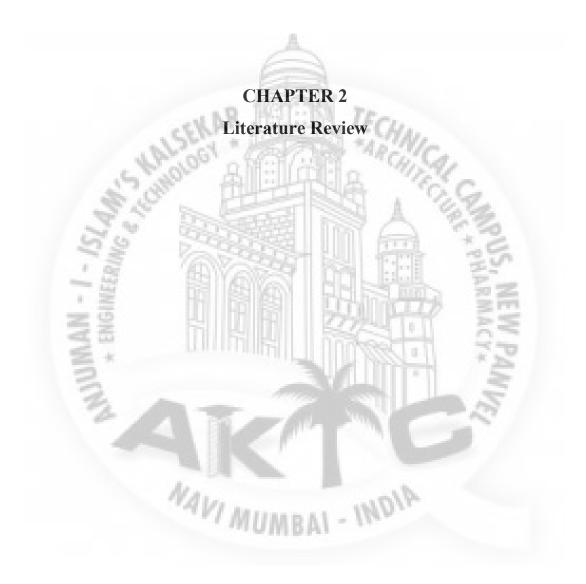
- 1. Thermal Load
- 2. Loads due to explosion of fuel
- 3. Loads due to compression of fuel
- 4. Inertia force due to reciprocating of piston

1.4 Motivation:

As an important part of the engine, piston endures the cyclic gas pressures and inertial forces at work, and this working condition may cause the fatigue damage of the piston, such as piston side wear, piston head/crown cracks and so on. The investigation suggests that the greatest stress appear on the upper end of the piston and stress concentration are one of the mainly reasons of fatigue failure

The modification of the piston is necessary to increase the surface resistance of piston against thermal and mechanical stress. At present researchers are attracted in downsizing of engine which will reduce emission of pollutants and consumption of less fuel.

The average temperature of piston crown during normal operation is about 300°C.


Aluminum expand more than iron at this temperature range. So for piston to fit the cylinder properly when at normal temperatures, the piston must have a loose fit when cold.

Due to high temperature and pressure in combustion chambers normal elements used for pistons results in fatigue failure ,cracks on piston head.

1.5 AIM/OBJECTIVE/PURPOSE OF THE STUDY:

The purpose of the study is to carryout how carbon-carbon, AlSiC and hyper-eutectic alloys can be used as a piston material rather than commonly used alloys of aluminium, cast iron, etc. The objective of the process is to design a piston which exhibits high performance durability, and can be used in high performing engines.

NAVI MUMBAI - INDIA

CHAPTER 2

LITERATURE REVIEW:

In 1950's compact automotive v-8 engines made of cast iron were introduced with aluminium alloy pistons as standard production parts.

Aluminium alloy pistons had significant advantage as compared to cast iron, steel pistons and could dissipate heat more quickly.

Today, most pistons are made of aluminium which is relatively light weight easy to manufacture and low in cost.

Piston experiences cyclic gas pressure, inertial forces, high temperature due to combustion during work as a result piston expands, when piston expands to the diameter of the cylinder it leads to piston seizure as it leads to metal to metal contact between cylinder and piston.

Due to high temperature and pressure in combustion chambers normal elements used for pistons results in fatigue failure ,cracks on piston head.

Carbon-carbon piston program was started in 1986 involving NASA and U.S army, The first objective was to develop and test for all carbon-carbon piston technology for use in two stroke engine. The second objective was to transfer the carbon-carbon piston technology to engines used in light aircraft, automobiles and other types of transport vehicles, i.e four stroke cycle engines.

When carbon-carbon piston was tested in the engine it did not seize, or produce any audible or visual abnormalities.

The development and testing that has taken place under advanced carbon-carbon piston programs shows that pistons can be manufactured from carbon-carbon composite material and can be successfully operated in an internal combustion engine.

Researchers have been conducting various experiments with different materials to design a piston with light weight, high strength, low thermal deformation, etc.

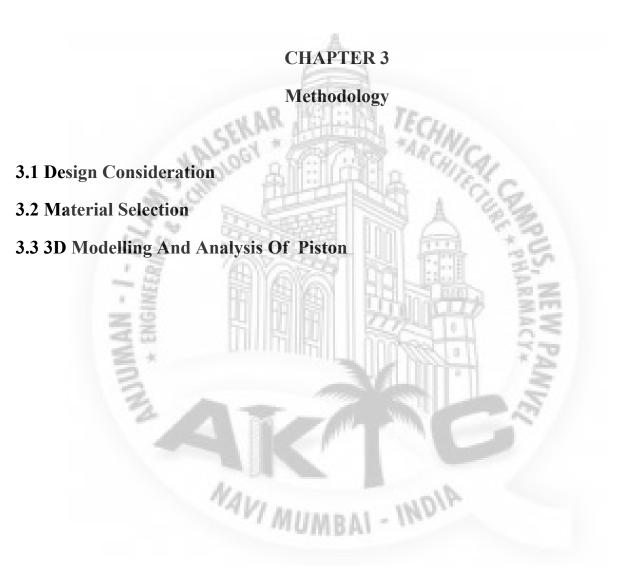
According to these researches we have found that traditional/commonly used aluminium pistons can be replaced with other composite materials (carbon-carbon, AlSiC, hyper-eutectic aluminium)

[Sundaram.K , Palanikumar.N] in their research concluded that AlSiC with 10% SiC material having better temperature distribution in both steady state thermal analysis as well as transient state thermal analysis

6

[Joel C, Anand S] in their research stated that "The aluminium alloy piston can be replaced by a carbon-carbon material piston. Since it provides minimum thermal stress in same working condition as that of aluminium alloy"

they also suggested that with the significant physical properties of carbon-carbon refractorycomposite material, pistons can be made much lighter weight


[Shubham Jog, Kevin Anthony] in their research stated that hyper-eutectic material has increased hardness, strength, wear resistance properties and optimisation in weight.

[Vinod Junju] carried out an attempt to reduce the intensity of thermo-structural stress by having silicon coating on the top of eutectic aluminum alloy piston crown where ceramic reinforcement was used to reduce the failure of the ceramic crown.

[Abino John] demonstrated how aluminum silicon carbide AlSiC, Aluminium composite can be used as an alternate to aluminium because of their abrasion resistance ,creep resistance, strength to weight ratio and better high temperature performance.

As these materials pose a strong possibility of replacing currently using aluminium alloys we can use these materials for piston.

CHAPTER 3

METHODOLOGY

3.1 Design Consideration:

In designing a piston for IC Engine, following points should be taken into consideration

- 1. It should have enormous strength to withstand high gas pressure and inertia forces
- 2. It should have minimum mass to minimize inertia forces.
- 3. It should desperse the heat of combustion quickly to the cylinder wall
- 4. It should have high speed reciprocation without any noise
- 5. It should be of sufficient rigid construction to withstand thermal and mechanical distortions
- 6. It should have sufficient support for piston pin.

3.2 Material Selection :

Depending upon the various properties of the materials like thermal conductivity, co-efficient of expansion, Young Modulus, etc we chose the materials as follows:

3.2.1) ALUMINIUM SILICON CARBIDE:

- Aluminium-(Silicon Carbide) is a metal ceramic composite material consisting of silicon carbide particles dispersed in a matrix of aluminum alloy. It combines the benefits of high thermal conductivity of metal and low CTE (coefficient of thermal expansion) of ceramic.
- It has High thermal conductivity (conducts heat almost like aluminium).
- Light weight and strong almost as light as aluminium but stronger.
- Cost effective production.

3.2.2)CARBON-CARBON MATERIAL:

- Carbon-carbon is a composite material consisting of carbon fibre reinforcement in a matrix of graphite. Carbon-carbon is well-suited to structural applications at high temperatures.
- Carbon-Carbon has High stiffness, high tensile strength, low weight, high chemical resistance, high temperature tolerance and low thermal expansion.

3.2.3) HYPER EUTECTIC ALUMINIUM:

- Hyper eutectic aluminium has a lower coefficient of thermal expansion, which allows
 engine designers to specify much tighter tolerances. ... When significantly more silicon is
 added to the aluminium than 12%, the properties of the aluminium change in a way that is
 useful for the purposes of pistons for combustion engines.
- Low Thermal Expansion
- Slightly Lighter
- The tendency to expand less means that the piston can have a tighter piston to bore clearance.

3.3) 3D Modelling And Analysis Of Piston :

3D Model of the piston is created using Fusion 360 As the 3-D model has been designed and material has been selected, the design has to be exported in the ANSYS Workbench and the analysis will be done on piston taking different materials for static structural and steady thermal.

After the completion of analysis, the results of the materials will be compared to know which material is better for piston as per the requirement.

Fig.3 Piston Assembly

Analysis Of Piston

We will be analyzing piston with all three materials for Total Deformation, Equivalent Stress, Equivalent Strain, Temperature Distribution, Heat Flux, and compare with traditionally used aluminium for the same

Static structural

These are the loading conditions that we have applied on all three materials for static structural

Object Name	Pressure	Fixed Support	
State	Fully Defined		
Scope			
Scoping Method	Geometry Selec	tion	
Geometry	1 Face	2 Faces	
	Definition		
Туре	Pressure	Fixed Support	
Define By	Normal To		
Applied By	Surface Effect		
Loaded Area	Deformed		
Magnitude	1.5e-002 MPa (ramped)	Ch.	
Suppressed	No	MAL-	

Table1. Loads

1) AlSiC

Total Deformation

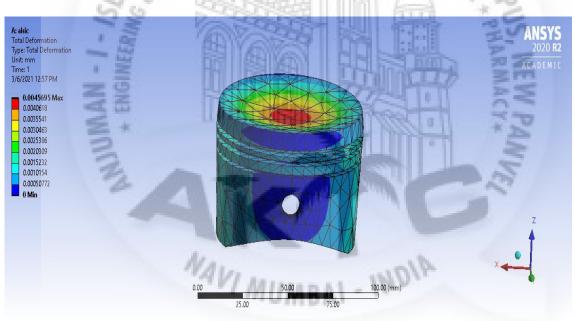
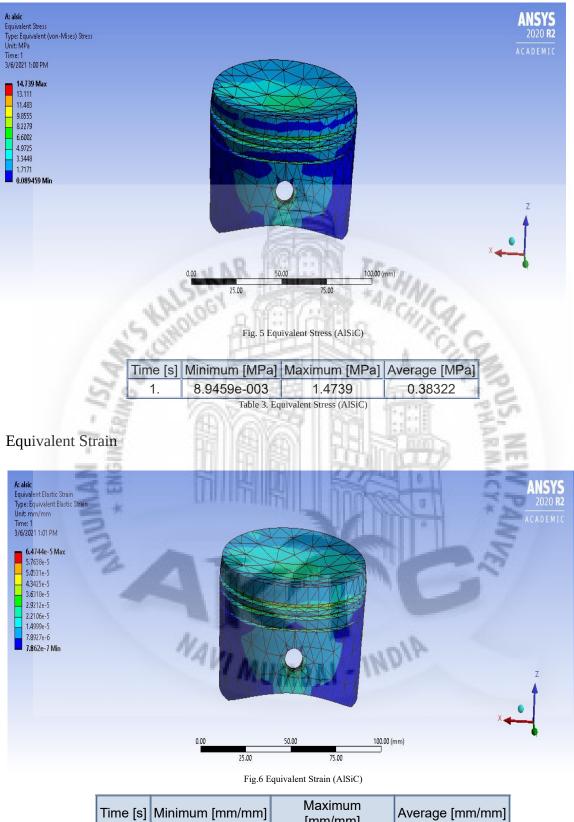



Fig. 4 Total Deformation (AlSiC)

Time [s]	Minimum [mm]	Maximum [mm]	Average [mm]
1.	0.	4.5695e-004	7.2668e-005

Table 2. Total Deformation (AlSiC)

Equivalent Stress

Time [s]	Minimum [mm/mm]	Maximum [mm/mm]	Average [mm/mm]
1.	7.862e-008	6.4744e-006	2.0011e-006

Table 4. Equivalent Strain (AlSiC)

Static Structural AlSiC Results

Object Name	Total Deformation	Equivalent Elastic Strain	Equivalent Stress
State		Solved	
		Scope	
Scoping Method		Geometry Select	lion
Geometry		All Bodies	
		Definition	
Туре	Total Deformation	Equivalent Elastic Strain	Equivalent (von-Mises) Stress
Ву		Time	
Display Time		Last	
Calculate Time History		Yes	
Identifier		2	
Suppressed		No	
		Results	
Minimum	0. mm	7.862e-008 mm/mm	8.9459e-003 MPa
Maximum	4.5695e-004 mm	6.4744e-006 mm/mm	1.4739 MPa
Average	7.2668e-005 mm	2.0011e-006 mm/mm	0.38322 MPa
Minimum Occurs On	P. 02 - 21	piston	1224
Maximum Occurs On		piston	50.C
54	5 pm fel	Information	" a la
Time	6-2.0458	1. s	02.20
Load Step	2.494		1 16
Substep	16116	1	1 25
Iteration Number	1241163		
1 2	Integra	tion Point Results	7% 2m
Display Option	22	A	veraged
Average Across Bodies		in Indexed	No
The second secon		**************************************	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5. Static Structural AlSiC Results

AlSiC Material Data

Thermal Conductivity0.17 W mm^-1 C^-1Density2.937e-006 kg mm^-3

Table 6. AlSiC constants

O les

Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C
2.3e+005	0.24	1.4744e+005	92742	

Table 7. Isotropic Elasticity (AlSiC)

2) Carbon-carbon

Total Deformation

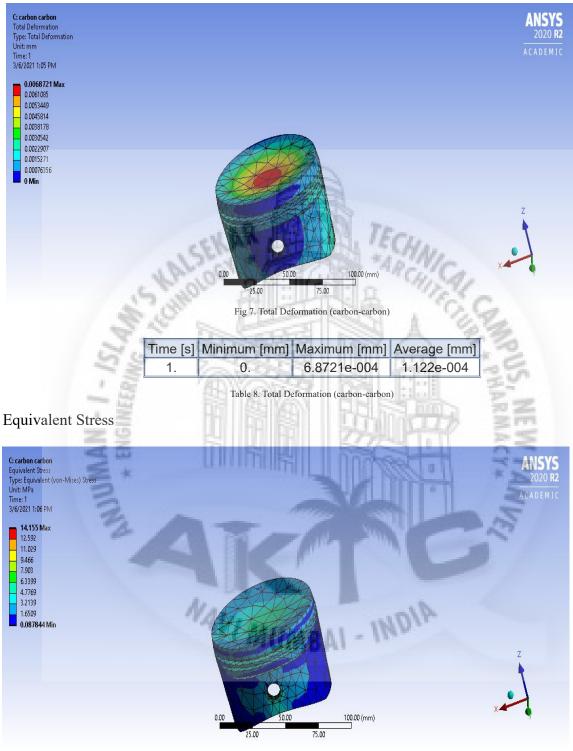


Fig 8. Equivalent Stress (carbon-carbon)

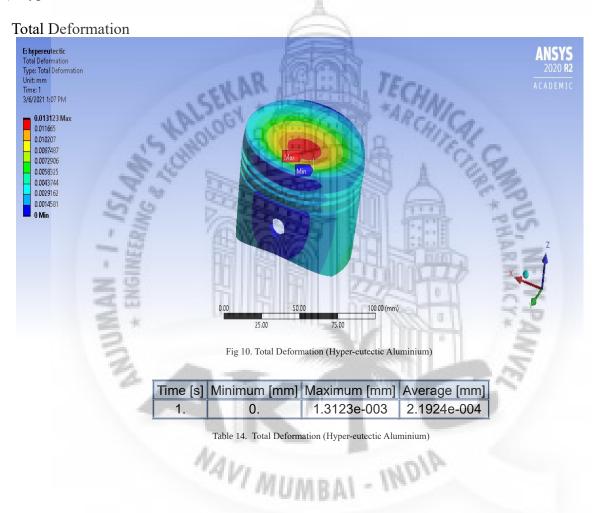
Time [s]	Minimum [MPa]	Maximum [MPa]	Average [MPa]
1.	8.7844e-003	1.4155	0.37602

Table 9. Equivalent Stress (carbon-carbon)

Equivalent Strain

quivalent Elastic Strain					ANSYS 2020 R2
ype: Equivalent Elastic Strain Init: mm/mm					ACADEMIC
ime: 1 /6/2021 1:05 PM					ALADEMIL
9.5439e-5 Max					
8.4968e-5					
- 7.4497e-5 - 6.4027e-5					
- 5.3556e-5					
4.3085e-5 3.2614e-5					
2.2143e-5 1.1672e-5			HA .		
1.2015e-6 Min					
		CER N			
					Z
		and the second second			
		VALK			•]
					X
		0.00	50.00 100.00 (mm)	Cu.	,
		25.00	75.00	271	11-
	1	Fig 9. Equi	valent Strain (carbon-carbon)	c_{ij}	Sq.
Tim	ne [s]	Minimum [mm/mm]	Maximum [mm/mm]	Ave	rage [mm/mm]
5	1.	1.2015e-007	9.5439e-006		2.997e-006
2	100	T.H. 10 F.		6	1 0.00
2	2	Table 10. Eq	uivalent Strain (carbon-carbon)	1.1.1	1 26
ic Structural carbo	on-ca	rbon Results	영상에 취실이	1.	1 22
Object N	Jame	Total Deformation	Equivalent Elasti Strain	c	Equivalent Stress
20	State		Solve	d	1 5 5
25		THE ST	Scope		
Scoping Me	ethod		Geometry S	electi	
					on
					on
	metry		All Bod		on
Geor	metry	Total Deformation	All Bod	lies	L W
Geor	metry Type	Total Deformation	All Bod Definition Equivalent Elastic S	lies train [on Equivalent (von-Mises) St
Geor	metry Type By	Total Deformation	All Bod Definition Equivalent Elastic S Time	lies train e	L W
Geor	metry Type By Time	Total Deformation	All Bod Definition Equivalent Elastic S Time Last	lies train l e	L W
Geor Display Calculate Time Hi	metry Type By Time istory	Total Deformation	All Bod Definition Equivalent Elastic S Time	lies train l e	L W
Geor Display Calculate Time Hi	metry Type By Time	Total Deformation	All Bod Definition Equivalent Elastic S Time Last	lies train l e	L W
Geor Display Calculate Time Hi	Type By Time istory ntifier	Total Deformation	All Bod Definition Equivalent Elastic S Time Last	lies train l e	L W
Geor Display Calculate Time Hi Ider	Type By Time istory ntifier	Total Deformation	All Bod Definition Equivalent Elastic S Time Last Yes	lies train I e	L W
Geor Display Calculate Time Hi Ider Suppre	Type By Time istory ntifier	Total Deformation	All Bod Definition Equivalent Elastic S Time Last Yes No	train	L W
Geor Display Calculate Time Hi Ider Suppre	metry Type By Time istory ntifier essed	NAVI MU	All Bod Definition Equivalent Elastic S Time Last Yes No Results 1.2015e-007 mm/n	train t	Equivalent (von-Mises) St
Geor Display Calculate Time Hi Ider Suppre Mini Maxi	metry Type By Time istory ntifier essed imum imum	0. mm 6.8721e-004 mm	All Bod Definition Equivalent Elastic S Last Yes No Results 1.2015e-007 mm/n 9.5439e-006 mm/n	train train t	Equivalent (von-Mises) St 8.7844e-003 MPa 1.4155 MPa
Geor Display Calculate Time Hi Ider Suppre Mini Maxi	metry Type By Time istory ntifier essed imum imum erage	0. mm	All Bod Definition Equivalent Elastic S Last Yes No Results 1.2015e-007 mm/n 9.5439e-006 mm/n 2.997e-006 mm/m	train e t nm nm	Equivalent (von-Mises) St
Geor Display Calculate Time Hi Ider Suppre Mini Maxi Ave Minimum Occur	metry Type By Time istory ntifier essed imum imum erage rs On	0. mm 6.8721e-004 mm	All Bod Definition Equivalent Elastic S Last Yes No Results 1.2015e-007 mm/n 9.5439e-006 mm/m 2.997e-006 mm/m	train train e t nm nm nm nm	Equivalent (von-Mises) St 8.7844e-003 MPa 1.4155 MPa
Geor Display Calculate Time Hi Ider Suppre Mini Maxi	metry Type By Time istory ntifier essed imum imum erage rs On	0. mm 6.8721e-004 mm 1.122e-004 mm	All Bod Definition Equivalent Elastic S Last Yes No Results 1.2015e-007 mm/n 9.5439e-006 mm/n 2.997e-006 mm/m pisto	train train e t nm nm nm nm	Equivalent (von-Mises) St 8.7844e-003 MPa 1.4155 MPa
Geor Display Calculate Time Hi Ider Suppre Mini Maxi Ave Minimum Occur	metry Type By Time istory ntifier essed imum imum erage rs On rs On	0. mm 6.8721e-004 mm 1.122e-004 mm	All Bod Definition Equivalent Elastic S Last Yes No Results 1.2015e-007 mm/n 9.5439e-006 mm/m 2.997e-006 mm/m pisto pisto	lies train e t nm nm n n	Equivalent (von-Mises) St 8.7844e-003 MPa 1.4155 MPa
Geor Display Calculate Time Hi Ider Suppre Mini Maxi Ave Minimum Occur Maximum Occur	metry Type By Time istory ntifier essed imum erage rs On rs On Time	0. mm 6.8721e-004 mm 1.122e-004 mm	All Bod Definition Equivalent Elastic S Last Yes No Results 1.2015e-007 mm/n 9.5439e-006 mm/n 2.997e-006 mm/m pisto pisto	lies train e t nm nm n n	Equivalent (von-Mises) St 8.7844e-003 MPa 1.4155 MPa
Geor Display Calculate Time Hi Ider Suppre Mini Maxi Ave Minimum Occur Maximum Occur	metry Type By Time istory ntifier essed imum imum erage rs On rs On	0. mm 6.8721e-004 mm 1.122e-004 mm	All Bod Definition Equivalent Elastic S Last Yes No Results 1.2015e-007 mm/n 9.5439e-006 mm/m 2.997e-006 mm/m pisto pisto	lies train e t nm nm n n	Equivalent (von-Mises) St 8.7844e-003 MPa 1.4155 MPa

Table 11. Static Structural carbon-carbon Results


Carbon-carbon Material Data

Thermal Conductivity	3.14e-002 W mm^-1 C^-1			
Density	2.2e-006 kg mm^-3			
Table 12. carbon-carbon constants				

Ī	Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C
Ī	1.5e+005	0.29	1.1905e+005	58140	
Table 12 is the size of a statistic (and an analysis)					

Table 13. isotropic elasticity (carbon-carbon)

3) Hyper-eutectic Aluminium

Equivalent stress

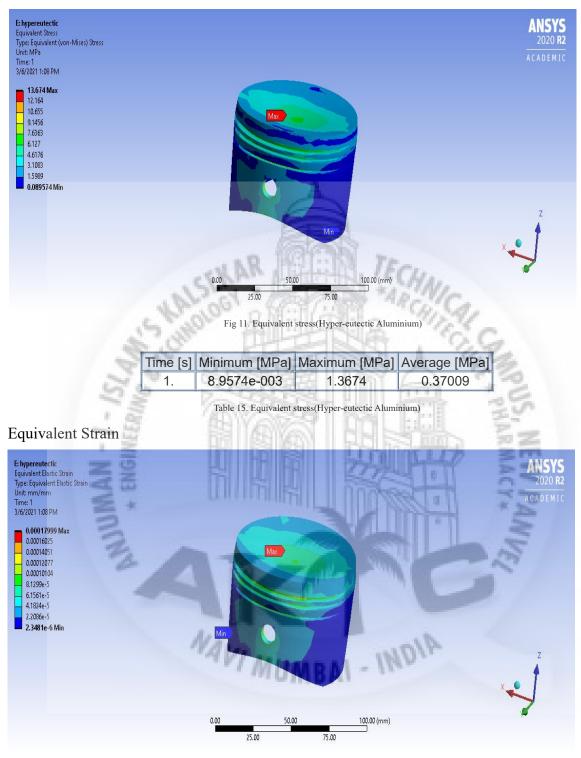


Fig 12. Equivalent strain (Hyper-eutectic Aluminium)

Time [s]	Minimum [mm/mm]	Maximum [mm/mm]	Average [mm/mm]		
1.	2.3481e-007	1.7999e-005	5.7282e-006		
Table 16 Equivalent strain (Hyper suffection Aluminium)					

Table 16. Equivalent strain (Hyper-eutectic Aluminium)

Object Name	Total Deformation	Equivalent Elastic Strain	Equivalent Stress		
State	•	Solved			
		Scope			
Scoping Metho	1	Geometry Select	lion		
Geometry	/	All Bodies			
		Definition			
Туре	Total Deformation	Equivalent Elastic Strain	Equivalent (von-Mises) Stress		
B	/	Time			
Display Time	9	Last			
Calculate Time Histor	Yes				
Identifie	r				
Suppressed	1	No			
	941	Results			
Minimun	0. mm	2.3481e-007 mm/mm	8.9574e-003 MPa		
Maximun	1.3123e-003 mm	1.7999e-005 mm/mm	1.3674 MPa		
Average	2.1924e-004 mm	5.7282e-006 mm/mm	0.37009 MPa		
Minimum Occurs Or		piston			
Maximum Occurs Or		piston			
Information					
Time		1. s			
Load Ste	1632	1			
Subste		1	A 2-		
	a second a second s		and the second se		

Static Structural Hyper-eutectic Aluminium Results

Table 17. Static Structural Hyper-eutectic Aluminium Results

Hyper-eutectic aluminium Material Data

The last	-	Thermal Conductivity	6.05e-002 W mm^-1 C^-1	ŝ
01	4	Density	2.7e-006 kg mm^-3	22
-		Table 18. Hyper-eut	ectic Aluminium Constants	P
Mashulus MDs [Dalaaaul	Dette Dully A	Andulus MDa Chans Madulu	

Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C		
77000	0.33	75490	28947			
Table 10 Jectronic Elacticity Hyper autactic Aluminium						

Steady-State Thermal Analysis

Below are the loading conditions for steady-state thermal analysis that we have selected for piston. To test the capacity of the materials we will consider the maximum temperature as 720°C.

1) AlSiC

Temperature Distribution

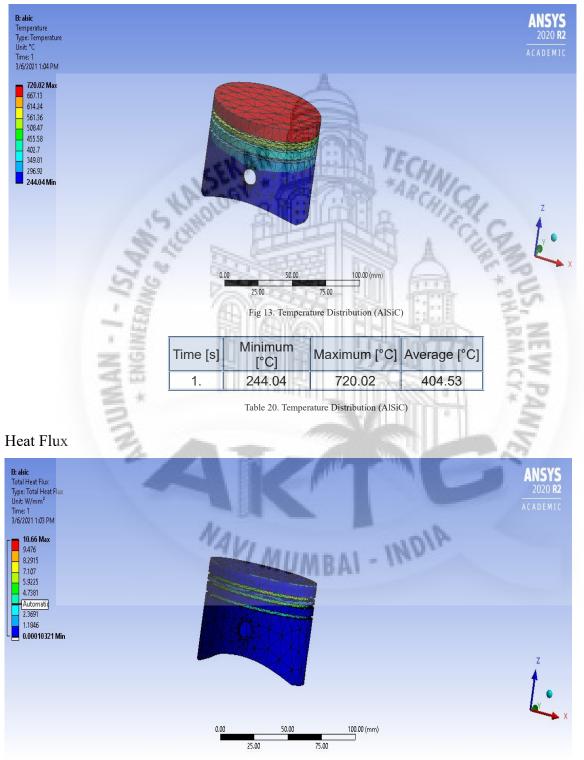


Fig 14. Heat Flux (AlSiC)

Time [s]	Minimum [W/mm²]	Maximum [W/mm²]	Average [W/mm²]
1.	1.0321e-004	10.66	1.5788

Table 21. Heat Flux (AlSiC)

AlSiC Steady-State Thermal Results

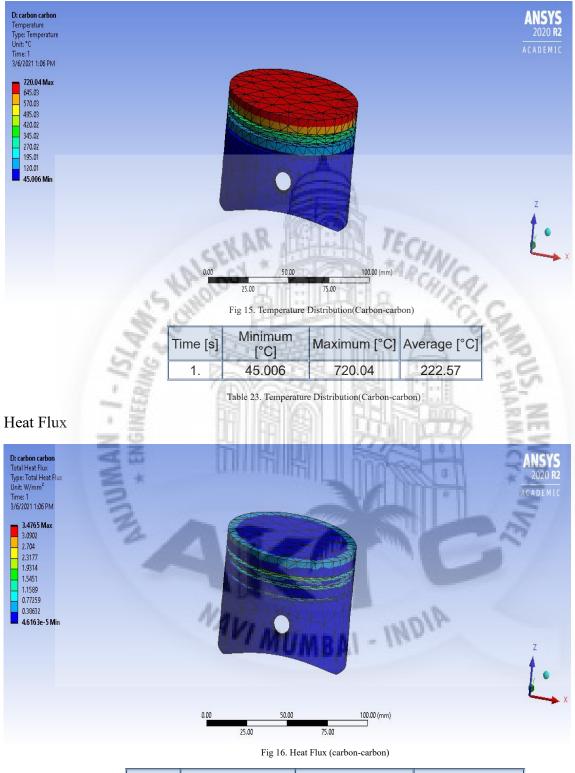

Object Name	Temperature	Total Heat Flux
State		Solved
	Scope	
Scoping Method	Geom	etry Selection
Geometry	All Bodies	
	Definition	
Туре	Temperature	Total Heat Flux
By		Time
Display Time	First File	Last
Calculate Time History		Yes
Identifier	11/2301	- HIMI
Suppressed		No
P.9 . PI	Results	1 1 23
Minimum	244.04 °C	1.0321e-004 W/mm ²
Maximum	720.02 °C	10.66 W/mm ²
Average	404.53 °C	1.5788 W/mm ²
Minimum Occurs On		piston
Maximum Occurs On		piston
	nformation	11 Ball
Time		-1. s
Load Step	1	1
Substep	11 - Sec. 11	1
Iteration Number	dans 10	1
Integra	tion Point Res	sults
Display Option	A MA I	Averaged
Average Across Bodies		No
the second		

Table 22.AISiC Steady-State Thermal Results.

INDIA

2) Carbon-carbon

Temperature Distribution

Time [s]	Minimum [W/mm²]	Maximum [W/mm²]	Average [W/mm ²]
1.	4.6163e-005	3.4765	0.42284

Table 24. Heat Flux (carbon-carbon)

Carbon-carbon Steady-State Thermal Results

Object Name	Temperature	Total Heat Flux
State		Solved
	Scope	
Scoping Method	Geometry Selection	
Geometry	All Bodies	
	Definition	
Туре	Temperature	Total Heat Flux
Ву		Time
Display Time		Last
Calculate Time History	Yes	
Identifier	r A	
Suppressed	No	
	Results	
Minimum	n 45.006 °C 4.6163e-005 W/mm ²	
Maximum	720.04 °C	3.4765 W/mm ²
Average	222.57 °C	0.42284 W/mm ²
Minimum Occurs On		piston
Maximum Occurs On		piston
10° H1	nformation	51 1 23
Time	56	1. s
Load Step	252	111 -
Substep	States and	1
Iteration Number	29 11	1
Integrat	tion Point Re	sults
Display Option		Averaged
Average Across Bodies	FILL 1 6.2	No

3) Hyper-eutectic Aluminium Temperature Deformation

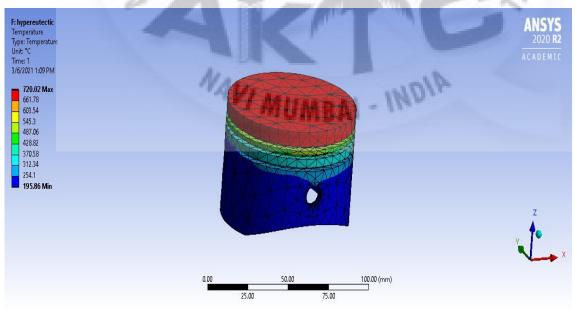
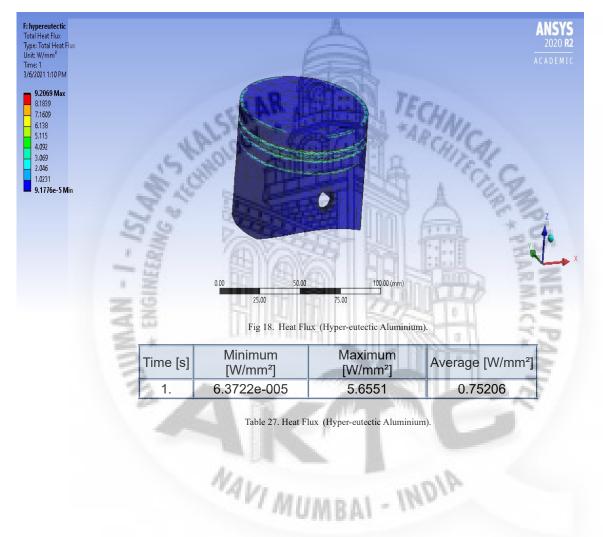



Fig 17. Temperature Distribution (Hyper-eutectic Aluminium).

Time [s]	Minimum [°C]	Maximum [°C]	Average [°C]
1.	91.395	720.03	279.37

Table 26. Temperature Distribution (Hyper-eutectic Aluminium).

Heat Flux

BAI - INDIA

Object Name	Temperature	Total Heat Flux		
State	Solved			
	Scope			
Scoping Method	Geom	etry Selection		
Geometry	A	All Bodies		
	Definition			
Туре	Temperature	Total Heat Flux		
Ву		Time		
Display Time		Last		
Calculate Time History		Yes		
Identifier	-			
Suppressed		No		
	Results			
Minimum	91.395 °C 6.3722e-005 W/mm ²			
Maximum	720.03 °C 5.6551 W/mm ²			
Average	279.37 °C 0.75206 W/mm ²			
Minimum Occurs On		piston		
Maximum Occurs On		piston		
8.9° HT	nformation	5 1 44		
Time	53 83	1. s		
Load Step	252	111		
Substep		1		
Iteration Number				
Integrat	tion Point Re	sults		
Display Option		Averaged		
	Average Across Bodies No			

Static structural for aluminium piston

1) Total Deformation

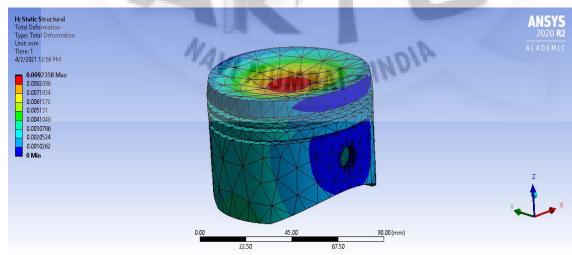


Fig 19. Total Deformation (aluminium).

Time [s]	Minimum [mm]	Maximum [mm]	Average [mm]
1.	0.	9.2358e-003	1.5339e-003

Table 29. Total Deformation (aluminium).

2) Equivalent stress

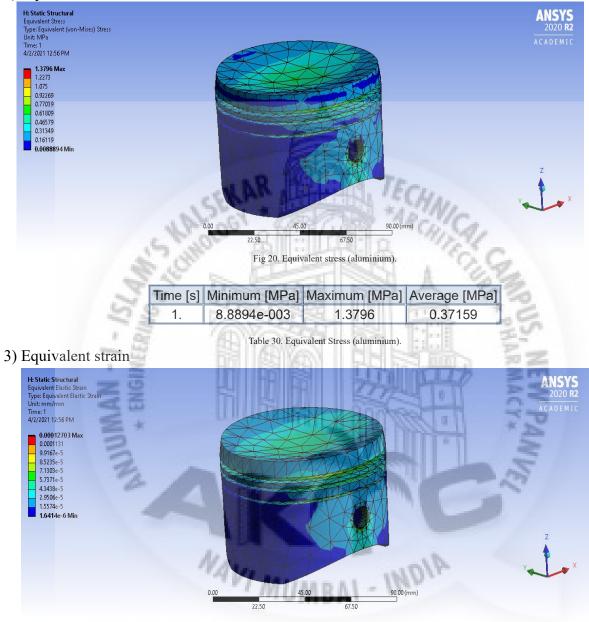


Fig 21. Equivalent strain (aluminium).

	Time [s]	Minimum [mm/mm]	Maximum [mm/mm]	Average [mm/mm]		
	1.	1.6414e-006	1.2703e-004	4.0289e-005		
-	Table 21 Equivalent Strain (aluminium)					

Table 31. Equivalent Strain (aluminium).

Aluminium static structural results

Object Name	Total Deformation Equivalent Elastic Strain		Equivalent Stress				
State	Solved						
Scope							
Scoping Method	Geometry Selection						
Geometry		All Bodies					
	Definition						
Type Total Deformation Equivalent Elastic Strain Equivalent (von-Mises) Stress							
By Time							
Display Time	Last						
Calculate Time History	/ Yes						
Identifier							
Suppressed		No					
	Alv-	Results					
Minimum	0. mm	1.6414e-006 mm/mm	8.8894e-003 MPa				
Maximum	9.2358e-003 mm	1.2703e-004 mm/mm	1.3796 MPa				
Average	1.5339e-003 mm	4.0289e-005 mm/mm	0.37159 MPa				
Minimum Occurs On	8° 114	piston	0.6				
Maximum Occurs On	A Sales	piston					
Information							
Time	Time 1. s						
Load Step	ADW28	SS 11	I.S.				
Substep	1	6 12 33					
Table 32. Aluminium static structural results.							

Steady Thermal for Aluminium 1) Temperature Distribution.

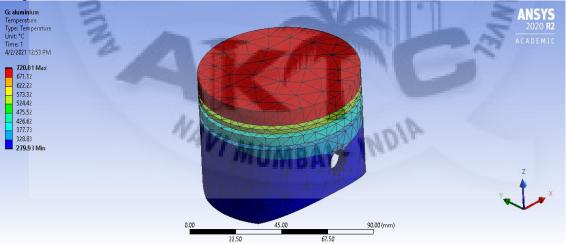


Fig 22. Temperature Distribution (aluminium).

Time [s]	Minimum [°C]	Maximum [°C]	Average [°C]			
1.	279.93	720.01	430.3			
Table 22 Transportant Distribution (alemaining)						

Table 33. Temperature Distribution (aluminium).

2) Heat Flux

Heat Flux					
G: aluminium Total Heat Flux				ANS	
Type: Total Heat Flux Unit: W/mm ²		-		202 ACADE	
Time: 1 4/2/2021 12:55 PM	625			ACADE	
11.708 Max 10.407					
9.1064		AAA	4		
7.8055 6.5046 5.2037					
3.9028 2.6019					
1.301 0.00011145 Min		ANDA	7		
- 0.00011143 Mill					
				Z	
				Y	
		-			
	0.00	45.00 67.50	90.00 (mm)		
		. Heat flux (aluminiun			
	F1g 22	. Heat flux (aluminiun	^{1).}		
т	ime [s] Minimum	Maximu		m ² 1	
'	[vv/mm]	[W/mm ²	1 Stort Com		
	1. 1.1145e-004	11.708			
· · · · · 1		4. Heat Flux (aluminiu	m).		
uminium Steady T			1 63		
_	Object Name	Temperature	Total Heat Flux	Za	
5	State	209	Solved	5	
	1 12.523	Scope	1 11 11 1	2.5	
-	Scoping Method Geometry Selection		·		
. 2	Geometry All Bodies			20 X.	
		Definition	11 Beef	24	
23	Туре	Temperature	Total Heat Flux	25	
5	By	T	Time	20	
3	Display Time		Last	-	
3	Calculate Time History		Yes	2	
27	Identifier			55	
0	Suppressed	A sile a	No	×.	
		Results			
	Minimum	279.93 °C	1.1145e-004 W/mm ²		
	Maximum	720.01 °C	11.708 W/mm ²		
	Average	430.3 °C	1.7571 W/mm ²		
	Minimum Occurs On	IAC AL	piston		
	Maximum Occurs On	MID N1	piston		
	Information				
	Time		1. s		
	Load Step		1		
	Substep		1		
	Iteration Number		1		
		tion Point Re			
	Display Option		1		
			Averaged		
	Average Across Bodies		No		

Table 35. Steady Thermal Results (aluminium)

27

Results

Static Structural :-

Materials	Total Defo	Total Deformation		Equivalent Stress		Equivalent Strain	
	Min.	Max.	Min.	Max.	Min.	Max.	
Aluminium alloy	0. mm	9.2358e- 003 mm	8.8894e- 003 MPa	1.3796 MPa	1.6414e- 006	1.2703e- 004	
AlSiC	0. mm	4.5695e- 004 mm	8.9459e- 003 MPa	1.4739 MPa	7.862e-008	6.4744e- 006	
carbon-carbon	0. mm	6.8721e- 004 mm	8.7844e- 003 MPa	1.4155 MPa	1.2015e- 007	9.5439e- 006	
Hyper-eutectic aluminium	0. mm	1.3123e- 003 mm	8.9574e- 003 MPa	1.3674 MPa	2.3481e- 007	1.7999e- 005	

Steady-state Thermal :-

, Car

2

Materials Temperature D		Distribution	Heat Flux	
3.4	Min.	Max.	Min.	Max.
Aluminium alloy	279.93 °C	720.01 °C	1.1145e-004 W/mm²	11.708 W/mm ²
AlSiC	244.04 °C	720.01 °C	1.0321e-004 W/mm²	10.66 W/mm ²
carbon-carbon	45.006 °C	720.01 °C	4.6163e-005 W/mm ²	3.4765 W/mm ²
Hyper-eutectic aluminium	91.395 °C	720.01 °C	6.3722e-005 W/mm ²	5.6551 W/mm ²

NAVI MUMBAI - INDIA

ir.aiktclibrary.org

Conclusion

The design of the piston that we have made is in such a way that the flat design that we have chosen is the most efficient way for the combustion process in IC engine. The review of different research paper shows that piston can be manufactured using composite materials like AlSiC, Carbon-carbon, Hyper-eutectic aluminium. In our research we tested all these three materials for deformation, heat flux, Temperature distribution, equivalent stress and equivalent strain. We found out that the Carbon-carbon material is the best suitable material for piston, as it shows less deformation, high temperature distribution, low coefficient of thermal expansion. Carbon-carbon pistons can hold its strength and stiffness at high temperatures. Carbon-carbon Pistons can be manufactured but its only drawback is that it is costly and not readily available, we hope that in the future with new technologies its manufacturing cost will be lowered and will be available cheaper as compared to now.

REFERENCES

[1] Aqeel Ahmed, M. S. Wahab, A. A. Raus, K. Kamarudin, Mechanical Properties, Material and Design of the Automobile Piston: An Ample Review.

[2] Andrzej Posmyk, Jan Filipczyk, Aspects of the applications of composite materials in the combustion engine.

[3] J. Piątkowskia*, R. Wieszałab, Tribological Properties of AlSi17Cu5Mg Alloy Modified with CuP Master Alloy with Various Speeds of Friction.

[4] Bhandari, V.B.: Design of Machine Elements.

[5] Molla Shehanaz, Dr.G.Shankariah, Design and Analysis of Piston Using Composite Material.

[6] K.Ventakareddy, V.Chandrashekhar Goud, Design and Analysis of Piston Using Composite Material.

[7] Sandeep K. Kourav, Vishnu B. Ghagar, Design and Analysis of Piston by using Finite Element Analysis.

[8] Raghunandan D, Gaddam Ramcharan and Dinesh Kumar, Design And Analysis Of Composite Piston. (IJAR)

[9] Arunagiri P*, Madhu Srikar Lohit, and Anish kumar, Analysis Of Al-Sic And Magnesium As Piston Material Using Ansys.

[10] Mark p. Gorton, Carbon-Carbon Piston Development.

[11] Aluminium Automotive Manual, European aluminium Association (2011).

[12] C Joel, S Anand, S Padmanabhan & Yadav S Prasanna Raj, Thermal Analysis of Carbon-Carbon Piston for Commercial vehicle diesel engine using CAE Tool (International Journal of Ambient Energy).

[13] R.Prabou1,C.Jagadeesh Vikram2,P.Naveenchandran3& E.Raja, Structural And Thermal Analysis On Piston Using Composite Material.

[14] Abino John, Jenson T. Mathew, Vasdev Malhotra, Nitin Dixit, Design and Analysis of Piston by SiC Composite Material.

[15] Shubham Jog, Kevin Anthony, Manasi Bhoinkar, Komal Kadam, Mahesh M. Patil, Modelling and Analysis of IC Engine Piston with Composite Material (AlSi17Cu5MgNi)