A PROJECT REPORT

ON

"DESIGN AND INSTALLATION OF VRV SYSTEM"

Submitted by

SIDDIQUI AHSANUDDIN QAMRUDDIN	18DME53
SHAIKH ABDUL GANI ABDUL GAFFAR	18DME40
KHAN MOHD IRSHAD MOHD SAFIQUE	18DME18
SHAIKH SHOAIB MOHD AYAZ	18DME50
NUMARTIAL FULLEUNCENT FOR THE AWARD OF	

IN PARTIAL FULFILMENT FOR THE AWARD OF THE DEGREE

OF

BACHELOR OF ENGINEERING

IN MECHANICAL ENGINEERING UNDER THE GUIDANCE OF Prof. AMRUTA KARVE

DEPARTMENT OF MECHANICAL ENGINEERING ANJUMAN-I-ISLAKALSEKAR TECHNICAL CAMPUS NEW PANVEL, NAVI MUMBAI – 410206

UNIVERSITY OF MUMBAI

ACADEMIC YEAR 2020-2021

A PROJECT REPORT ON

"DESIGN AND INSTALLATION OF VARIABLE REFRIGERANT VOLUME (VRV) SYSTEM"

Submitted to

UNIVERSITY OF MUMBAI

In partial fulfillment of the requirement for the award of

Bachelor's Degree in Mechanical Engineering By

SIDDIQUI AHSANUDDIN QAMRUDDIN18DME53SHAIKH ABDUL GANI ABDUL GAFFAR18DME40KHAN MOHD IRSHAD MOHD SAFIQUE18DME18SHAIKH SHOAIB MOHD AYAZ18DME50

Under the guidance of

Prof. AMRUTA KARVE

Department of Mechanical Engineering

ANJUMAN-I-ISLAM'S KALSEKAR TECHNICAL CAMPUS, NEW PANVEL

2020-2021

Affiliated to

UNIVERSITY OF MUMBAI

ir.aiktclibrary.org

ANJUMAN-I-ISLAM KALSEKAR TECHNICAL CAMPUS NEW PANVEL

(Approved by AICTE, Recg. By Maharashtra Govt. DTE,

Affiliated to Mumbai University)

PLOT #2&3, SECTOR 16, NEAR THANA NAKA, KHANDAGAON, NEW PANVEL, NAVI MUMBAI-410206, Tel.: +91 22 27481247/48 Website: www.aiktc.org

CERTIFICATE

This is to certify that the project entitled

"DESIGN AND INSTALLATION OF VRV SYSTEM"

Submitted by,

SIDDIQUI AHSANUDDIN QAMRUDDIN	18DME53
SHAIKH ABDUL GANI ABDUL GAFFAR	18DME40
KHAN MOHD IRSHAD MOHD SAFIQUE	18DME18
SHAIKH SHOAIB MOHD AYAZ	18DME50

To the Kalsekar Technical Campus, New Panvel is a record of bonafide work carried out by him under our supervision and guidance, for partial fulfillment of the requirements for the award of the Degree of Bachelor of Engineering in Mechanical Engineering as prescribed by University of Mumbai, is approved.

Internal Examiner	External Examiner
Prof	Prof
Head of Department	Principal
Prof	Dr

ANJUMAN-I-ISLAM

KALSEKAR TECHNICAL CAMPUS NEW PANVEL

(Approved by AICTE, recg. By Maharashtra Govt. DTE,

Affiliated to Mumbai University)

PLOT #2&3, SECTOR 16, NEAR THANA NAKA, KHANDAGAON, NEW PANVEL, NAVI MUMBAI-410206, Tel.: +91 22 27481247/48 Website: www.aiktc.org

APPROVAL OF DISSERTATION

This is to certify that the thesis entitled

"DESIGN AND INSTALLATION OF VRV SYSTEM"

Submitted by

SIDDIQUI AHSANUDDIN QAMRUDDIN	18DME53
SHAIKH ABDUL GANI ABDUL GAFFAR	18DME40
KHAN MOHD IRSHAD MOHD SAFIQUE	18DME18
SHAIKH SHOAIB MOHD AYAZ	18DME50

In partial fulfillment of the requirements for the award of the Degree of Bachelor of Engineering in Mechanical Engineering, as prescribed by University of Mumbai approved.

(Internal Examiner)

(External Examiner)

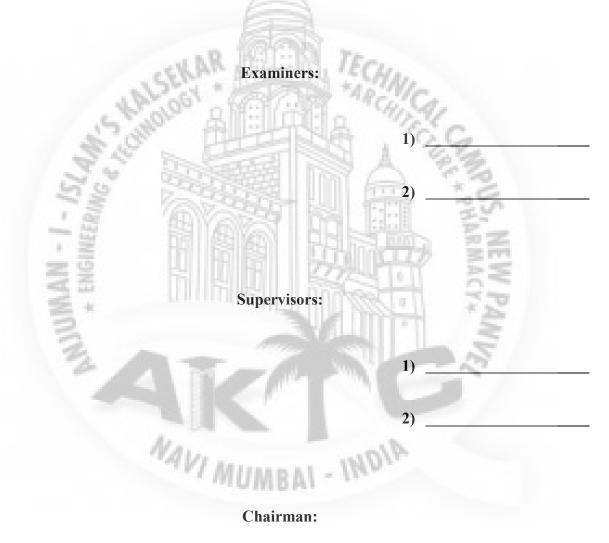
Date:

ir.aiktclibrary.org

ACKNOWLEDGEMENT

After the completion of this work, we would like to give our sincere thanks to all those who helped us to reach our goal. It's a great pleasure and moment of immense satisfaction for us to express my profound gratitude to our guide **Prof. AMRUTA KARVE** whose constant encouragement enabled us to work enthusiastically. His perpetual motivation, patience and excellent expertise in discussion during progress of the project work have benefited us to an extent, which is beyond expression.

We would also like to give our sincere thanks to **Prof. ZAKIR ANSARI**, Head of Department, **Prof. ASLAM HIRANI**, Project Co-Guide and **Prof. RIZWAN SHAIKH**, Project coordinator from Department of Mechanical Engineering, Kalsekar Technical Campus, New Panvel, for their guidance, encouragement and support during a project.


I take this opportunity to give sincere thanks to Mr. SHOAIB QURESHI, Site Engineer at FOUR SEASON RECIDENCY (WORLI), Mr. SIRAJ SHAIKH Design Engineer Incharge of DESIGN DEPARTMENT and Mr. ZAKI QURESHI CEO "ASIATIC ENGG. HVAC PVT. LTD. (DAIKIN AUTHORIZED CHANEL PARTNER JAPAN)", for all the help rendered during the course of this work and their support, motivation, guidance and appreciation.

I am thankful to **Dr. ABDUL RAZZAK HONNUTAGI**, Director, Kalsekar Technical Campus New Panvel, for providing an outstanding academic environment, also for providing the adequate facilities.

Last but not the least I would also like to thank all the staffs of Kalsekar Technical Campus (Mechanical Engineering Department) for their valuable guidance with their interest and valuable suggestions brightened us.

Project I Approval for Bachelor of Engineering

This Project entitled "DESIGN AND INSTALLATION OF VRV SYSTEM" by Siddiqui Ahsanuddin Qamruddin, Shaikh Abdul Gani Abdul Gaffar, Shaikh Shoaib Mohd Ayaz, Khan Mohd Irshad Shafique is approved for the degree of Bachelor of Engineering in Department of Mechanical Engineering.

Declaration

We declare that this written submission represents our ideas in our own words and where others ideas or words have been included, we have adequately cited and referenced the original sources. We also declare that we have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or violation falsified any idea/data/fact/source in my submission. We understand that any violation of the above will be cause for disciplinary action by the Institute and can also evoke penal action from the sources which have thus not been properly cited or from whom proper permission has not been taken when needed.

NAVI MUMBAI - INDIA

SIDDIQUI AHSANUDDIN QAMRUDDIN18DME53SHAIKH ABDUL GANI ABDUL GAFFAR18DME40KHAN MOHD IRSHAD MOHD SAFIQUE18DME18SHAIKH SHOAIB MOHD AYAZ18DME50

ABSTRACT:

Air conditioning demand is rapidly increasing in many parts of the world especially in moderate climate. Air conditioners and refrigerators are the only equipment consumes more electricity say 70 percent house hold articles this result in drastic electricity demands on hot summer days which causes unwanted increase in the use of fossil fuel and nuclear energy which leads to global warming and air pollution. The VRV system uses R410A as refrigerant because it contains only Fluorine hence it has very low global warming potential. VRV systems are enhanced versions of ductless multi-split systems, permitting more indoor units to be connected to each outdoor unit and providing additional features such as simultaneous heating and cooling and heat recovery. VRV technology uses smart integrated controls, variable speed drives, refrigerant piping, and heat recovery to provide products with attributes that include high energy efficiency, flexible operation, ease of installation, low noise, zone control, and comfort using all-electric technology. VRV systems are very popular in Asia.

This thesis presents design of Variable Refrigerant Volume (VRV) system for a residential building in Four Seasons Residency Worli Mumbai. The VRV system was selected as the space saving was priority of the client. The system is designed using ISHRAE hand book and DAIKIN manual. The heat load was calculated considering various factors such as outdoor condition, heat gain through glass, transmission gain through wall etc. As per the heat load calculated proper selection of outdoor unit and indoor unit was done using DAIKIN manual. The schematic of pipe and indoor is displayed considering cost effectiveness. The obtained results were validated by the industry.

Keywords:

R410A, ISHRAE, outdoor unit, indoor unit, cassette, British Thermal Unit, compressor

Contents

1. INTRODUCTION
1.1 Background: 1
1.2 VRV Technology:
1.3 Problem Definition:
1.4 Project Aim & Objectives:
1.4.1 Aim:
1.4.2 Objectives:
2. LITERATURE SURVEY
2.1 Variable Refrigerant Volume Systems (GSA journal)4
2.2 Installation guide VRV system
2.3 Comparative Thermodynamic and economic analysis of conventional HVAC and VRV system
2.4 A review of HVAC with VRV system
2.5 Design of HVAC with VRF system for a space house in Ahmedabad
2.6 Developed a new VRV simulation module based on physics in Energy Plus version 6
3. TOTAL COSTING 7 4. DESIGNING METHODOLOGY: 12
4. DESIGNING METHODOLOGY:
4.1. Steps of Methodology 12 5. Theory of VRF System 16
5. Theory of VRF System
5.1 Introduction of Air-conditioning System
5.2 what is VRV system
5.3 Types of VRV system 17
5.3.1. Heat Pumps system - 2 pipes
5.3.2. Heat Recovery System - 3 pipes
5.3.3. VRV Water Cooled
5.4 Components of VRV system
5.4.1 Outdoor unit:
5.4.2. Indoor unit
5.4.3 Raffinates (Y-joint):
5.4.4 Copper Pipes:
5.4.5 Insulation:

6. HEAT LOAD CALCULATION	7
6.1 Method of heat load estimation	7
6.2 Heat load estimation	0
6.2.1 MASTER BEDROOM	2
6.2.2. GUEST BEDROOM 2	5
6.2.3. GUEST BEDROOM 3	
6.2.4. LIVING ROOM	
6.2.5. TOTAL BATHROOMS	
6.3. Summary:	7
6.4. Selection of outdoor & Indoor Unit Capacity:	
6.4.1 Outdoor unit:	8
6.4.2. Indoor unit:	
6.5. Pipe Size and Details	
6.6. Insulation:	9
7. VALIDATION OF RESULT	0
8. PHOTOGRAPHY:	
9. FUTURE SCOPE & CONCLUSION	6
9.1. Future Scope:	6
9.2. Conclusion:	7
REFERENCE	
WEBSITES:	0

NAVI MUMBAI - INDIA

TABLE OF FIGURE:

Figure 5-1. Cooling from Outdoor Unit to Different Section	17
Figure 5-2. Heating and Cooling at Different Section from Outdoor Unit	18
Figure 5-3.VRV Water Cooling	
Figure 5-4.Outdoor Unit	20
Figure 5-5.Indoor Unit	21
Figure 5-6. 4-way cassette	22
Figure 5-7.Compact 4-way cassette	
Figure 5-8. 2-way cassette	
Figure 5-9. 1-way cassette	23
Figure 5-10. Concealed Duct Type	24
Figure 5-11. Raffinates (Y-joints)	24
Figure 5-12. Soft Drawn copper pipe	25
Figure 5-13. Hard Drawn Copper Pipes	25
Figure 5-14.Insulation	
Figure 7-1. Floor Layout L-22,23,27,35	61
Figure 8-1. Industry Visit	62
Figure 8-2. Project site visit.	62
Figure 8-3. Outdoor Unit.	
Figure 8-4. Concealed duct type Indoor Unit	64
Figure 8-5. Ducting in Living Room.	65
Figure 8-6. Ducting in Bedroom & Bathroom	
Figure 8-7. Inline fan in Kitchen for Exhaust (1400CFM)	67
Figure 8-8. Inline fan for fresh air (4000 CFM).	67
Figure 8-9. Smoke Fire Damper & Arma Sound	68
Figure 8-10. Planum	68
Figure 8-11. Insulation material & Paste SR505.	69
Figure 8-12. Appling insulation & Aluminum tape	69
Figure 8-13. Indoor filter &Fastener	70
Figure 8-14. Raffinates (Y-joint) Figure 8-15. Outdoor Scroll Compressor	70
Figure 8-15. Outdoor Scroll Compressor	71
Figure 8-16. Inventory Store Room.	71
Figure 8-17. Turbo fan (36000 CFM) for Exhaust.	72
Figure 8-18. Damper & Turbo fan (36000 CFM) for Fresh air	72
Figure 8-19. PLC Control Room.	73
Figure 8-20. Completion of installation of VRV System in Living Room & Bedroom	74
Figure 8-21. Completion of installation of VRV System in Bathroom & Kitchen	75

LIST OF TABLES:

Table 1. Total Cost of Project.	
Table 2. CFM/Ventilation Calculation on the Basis of Area	
Table 3. CFM/Ventilation Calculation on the Basis of No. of Persons	
Table 4. Design Condition.	
Table 5. Master Bedroom.	
Table 6. Guest Bedroom 2	
Table 7. Guest Bedroom 3.	
Table 8. Living Room.	
Table 9. Total Bathrooms.	
Table 10. Result of Design	
Table 11. Selection of Outdoor Unit.	
Table 12. Selection of Indoor Unit.	

NAVI MUMBAI - INDIA

CHAPTER 1

1. INTRODUCTION

1.1 Background:

Variable refrigerant volume (VRV), also known as variable refrigerant flow (VRF), is an HVAC technology invented by Daikin Industries, Ltd. in 1982. Like ductless mini splits, VRVs use refrigerant as the cooling and heating medium.

Variable refrigerant Volume (VRV) systems vary the flow of refrigerant volume to indoor units based on demand. This ability to control the amount of refrigerant that is provided to fan coil units located throughout a building makes the VRV technology ideal for applications with varying loads or where zoning is required.

VRV systems are available either as heat pump systems or as heat recovery systems for those applications where simultaneous heating and cooling is required. In addition to providing superior comfort, VRV systems offer design flexibility, energy savings, and cost-effective installation

1.2 VRV Technology:

In a VRV system, multiple indoor fan coil units may be connected to one outdoor unit. The outdoor unit has one or more compressors that are inverter driven, so their speed can be varied by changing the frequency of the power supply to the compressor. As the compressor speed changes, so does the amount of refrigerant deliver by the compressor.

Variable Refrigerant Volume (VRV) system is an air conditioning system which uses refrigerant as a medium to provide zonal cooling and heating. It varies the flow of refrigerant to each room as per the required condition. the compressor used is driven by inverter so that by changing the speed of compressor the flow of refrigerant's volume can be varied hence, the variable volume system. This ability to control the flow of refrigerant makes the VRV system ideal for applications with varying load or where zonal heating and cooling is desired. VRV systems provide design flexibility, energy savings, and cost-effective installation along with superior comfort.

Each indoor fan coil unit has its own metering device that is controlled by the indoor unit itself, or by the outdoor unit. As each indoor unit sends a demand to the outdoor unit, the outdoor unit delivers the amount of refrigerant needed to meet the individual requirements of each indoor unit.

These features make the VRV system ideally suited for all applications that have part load requirements based on usage or building orientation, as well as applications that require zoning

1.3 Problem Definition:

The traditional air conditioning system used takes up a lot of space and maintenance cost is quite high. moreover, they use of ducts which introduce cooling and heating losses. besides the control over the flow of refrigerant or coolant is not possible as the pump speed cannot be varied. They also have high operation cost.in order to solve these problems we have implemented VRV system considering the required cooling load.

1.4 Project Aim & Objectives:

<u>1.4.1 Aim:</u>

- The main aim is to design and install a Variable refrigerant Volume (VRV) system in FOUR SEASONS RESIDENCY WORLI.
- To provide heating ventilation and cooling by providing system which is environmentally friendly.
- > To provide cooling and ventilation in economic cost.

DESIGN OF VRV SYSTEM

- > To provide consistent comfort to occupants.
- > To ensure the quite operation of the system.
- > To design the system such that it provides zonal heating and cooling.

1.4.2 Objectives:

- > To design energy efficient system
- To provide heating ventilation and cooling by providing system which is environmentally friendly.

- INDIA

- > To provide cooling and ventilation in economic cost.
- > To provide consistent comfort to occupants.
- > To ensure the quite operation of the system.
- > To design the system such that it provides zonal heating and cooling

NAVI MUN

CHAPTER 2

2. LITERATURE SURVEY

2.1 Variable Refrigerant Volume Systems (GSA journal)

Brian Thornton and Anne Wagner published a journal for the General Service Administration of the USA. This journal gives guidelines for application of VRV system. According to it VRV systems can achieve 30% and higher HVAC energy cost savings relative to minimally code conventional compliant systems, or older inefficient systems. Buildings switching from gas heat to VRV systems offer large energy savings, but because of the price differential between electricity and gas, the utility bill savings will be greater when switching to VRV systems. The best opportunities for VRV systems include buildings with these target characteristics like inefficient HVAC systems and high energy costs, lack of cooling or inadequate cooling capacity, although adding cooling capability or capacity may increase total energy usage despite possible reductions in fan and heating energy usage, new building projects that can take advantage of opportunities to reduce floor-to-floor height, or increase usable floor space by removing mechanical equipment from inside the main building areas, VAV (Variable Air Volume) systems with electric reheat or heat pumps with electric back-up heat. Up to a 70% reduction in HVAC energy is possible from a VRV system with exhaust air heat recovery when compared to a VAV system with electric reheat, according to an energy modeling study (Hart and Campbell 2011), significant heating requirements - the Midwest and Northeast are good places to look for opportunities in this regard.

2.2 Installation guide VRV system

It is a manual published by Ingersoll Rand. It gives step by step guide lines for installation of VRV system. Various safety precaution is explained. Guidelines for proper selection of tools and pipe dimeters is given. It explains orientation of outdoor unit and safety measures while transporting it

as per the required tonnage. Various test that need can be carried out after installation are explained unit.

2.3 Comparative Thermodynamic and economic analysis of conventional HVAC and

VRV system

Emrah' zahi, Aseguil Abusoglu,A. ihsan Kutlar,Oguzhan Dagci carried out an experiment where they did thermodynamic and economic analyses of an existing social and cultural building which has a heating and cooling area of 8852 m² by comparing of a conventional HVAC and a VRV system. A novel contribution is given to the open literature by comparing two systems with actual data measured from the existing system. This study contains insulation, heating and cooling accounts of a building together. In this paper, VRV system is modelled to the existing building for the comparison of the conventional HVAC system. Both systems have been compared in terms of heating and cooling capacity, initial, operation and maintenance costs. It is found that the VRV system is more economic and efficient such that the VRV system is found to have 44% cost profit when compared with the conventional HVAC system.

2.4 A review of HVAC with VRV system

Kartik Patel did a research on VRV system and its energy saving potential in India. According to the study VRV technology is relatively new in India and gained the momentum after 2007. So, this is been relatively new and efficient way to design HVAC system with VRV technology. VRV technology uses smart integrated controls, variable speed drives, refrigerant piping, and heat recovery to provide products with attributes that include high energy efficiency, flexible operation, ease of installation, low noise, zone control, and comfort using all-electric technology. Still efficiency and energy saving depend on many variables which controls heat load of the building. So, energy saving from VRV technology may vary from 10% to 40%

2.5 Design of HVAC with VRF system for a space house in Ahmedabad

Kartik M Patel a PG student designed VRV system for a space house. Various heat load gain, energy efficiency ratio (EER) was calculated. The cost of the project was estimated. Design has been done using ISHRAE standards.

2.6 Developed a new VRV simulation module based on physics in Energy Plus version

With their comparison between measured and simulated results, normalized mean bias errors (NMBEs) were 2.8% and 4.5% for cooling and heating operations. Saving potential of VRV air conditioners could be high as 18 % compared to the energy consumed by split air-conditioning systems when used for appropriate applications. Therefore, the VRV system can be considered as a potential candidate for the installations where the building occupancy and cooling load are regularly varying. Further, Chiller (Central) air-conditioning system can also be considered as a potential candidate as it performs almost efficiently as the VRV system. It consumes around 4 % more energy than VRV system.

The major objective of the research study was to analyses the suitability of VRV air- conditioning system, analyses the actual saving potential and cost effectiveness of VRV air- conditioning system compared to the other available types of air-conditioning systems and access the maintainability of VRV air-conditioning system. (UNIVERSITY OF MORATUWA)

NAVI MUMBAI - INDIA

CHAPTER 3

3. TOTAL COSTING

Sr.	Description	Qty.	Unit	Single unit	All unit price
1	Supplying, Installing, Testing & commissioning of outdoor type of following capacity air cooled 100% inverter compressor based VRV/VRF system using R410A/R407 refrigerant, i/c first fill of refrigerant. The system shall be suitable to operate on 3 phase, 415 V 50/60 Hz AC power supply and shall comprise of DC Twin Rotary/Seroll compressor, air cooled condensers and its fan with motor, micro-processors controls, control panels, suitable starters, along with internal control and power wiring internal interconnecting refrigerant pipes, charging ports, system single enclosure (the electrical and electronic components assemblies shall be protected with IP - 55 enclosures). Unit shall be complete with suitable safety steel structure COP levels not less than 5.25 at 50% capacities.		THE ALL AND AL	price	NEW DA.
a)	18 HP ODU	65	Each	9,31,500	6,05,47,500
b)	16 HP ODU	65	Each	8,37,500	5,44,37,500
2	Concealed VRV type four directional air flow DX split indoor air conditioning units of the following capacity for mounting inside false ceiling, each comprising of cooling coil, blower with multispeed motor, electronic expansion				

	value ,supply and return air grill, filter, insulted connection of refrigerant circuit, intake airport for fresher air entry, condensate water drain pump with electronic level sensor complete, suitable to operate from central remote control & installation from ceiling with all required supports, anchor fasteners hardware's, interconnecting refrigerant copper piping, valves, supports etc. including termination at nearest power outlet with copper wire of 3C x 2.5 sq.mm in metallic flexible conduit and interlocking with outdoor units including remote controller. Units shall confirm to the detailed specification of the tender document.		TECHNICAL CAL
a)	2.06 TR	195	Each 86,500 1,68,67,500
b)	8.12 TR	65	Each 1,94,700 1,26,55,500
c)	4.75 TR	130	Each 1,47,900 1,92,27,000
3	Supplying & fixing Interconnecting refrigerant copper piping work with supplying and fixing (19 mm thick) closed cell elastomeric nitrile rubber tubular insulation between each set of indoor & outdoor units as per specifications, all piping inside the building shall be properly supported with MS hanger etc. complete as required. The piping shall be laid in masonry shafts, wall, roof/ ceiling, partly in existing pipe well supported at specific intervals with wooden patterns and screwed with anchor fasteners. (The insulation shall be 19 mm thick of NITRILE RUBBER).	IBAI -	NOIA

IR@AIKTC-KRRC

DESIGN OF VRV SYSTEM

a)	47.625mm OD or 1 7/8" dia	4225	Meter	1,677	70,85,325
b)	41.275mm OD or 1 5/8" dia	4225	Meter	1,410	59,57,250
c)	34.925mm OD or 1 3/8" dia	1950	Meter	1,286	25,07,700
d)	28.575 mm OD or 1 1/8" dia	2275	Meter	1,019	23,18,225
e)	25.4 mm OD or 1" dia	4550	Meter	966	43,95,300
f)	22.225 mm OD or 7/8" dia	4875	Meter	841	40,99.875
g)	19.05 mm OD or 3/4" dia	3250	Meter	705	18,85,000
h)	15.875 mm OD or 5/8" dia	5850	Meter	580	33,93,000
I)	12.7 mm OD or 1/2" dia	7150	Meter	501	35,82,150
j)	9.525 mm OD or 3/8" dia	7800	Meter	399	31,12,200
k)	6.35 mm OD or 1/4" dia	5200	Meter	260	13,52,000
4	SITC of insulated Copper Refrigerant Branch Kit/ Refinet Joint for VRV piping complete as required. The insulation shall be 19 mm thick of NITRILE RUBER.	325	Each	3,864	12,55,800
5	Supplying, installation, testing and commissioning of heavy gauge UPVC drain Piping for the VRV system fully				

	insulated with 6mm thick NITRILE RUBBER insulation with adequate supports as per specification and instructions of Engineer in charge etc. as required.				
a)	25 mm dia.	5850	Meter	144	8,42,400
b)	32 mm dia.	18850	Meter	177	33,36,450
c)	40mm dia.	5850	Meter	202	11,81,700
d)	50mm dia.	4550	Meter	255	11,60,250
6	Supplying, laying and fixing control cum transmission cable between indoor and outdoor units of size 2 core x 2.5 sq.mm XLPE/PVC insulated copper conductor in PVC conduit including accessories like cable glands & Lugs etc. as required.	9750	Meter	132	12,87,000
7	Supplying Fabrication of MS frame structure suitable for mounting outdoor VRF unit mesh out of suitable thickness and section i/c cutting, welding and panting with 2 coats of synthetic enamel paint after primer, fixing on wall with anchor fastener etc. complete as required.	81250	MOL	152	1,23,50,000
8	Arma Sound	65	Each Floor	40,000	26,00,000
9	Rubber Insulation	65	Each Floor	1,66,000	1,07,90,000
10	GI duct of 400X430, L1200 370X250, L1400 TAPER	65	Each Floor	2,40,000	1,56,00,000

	190X170, L1350				
	150X80, L1230				
	250X220, L1400TAPER				
	200X150, L950				
	175X130, L400				
	70X80, L540				
11	2x In Line Fan (4000CFM)	65	Each	54,000	35,10,000
11		05	Floor	54,000	55,10,000
12	Planum (19 Qty. X 65 Floors)	1235	Each	1,100	13,58,500
		1230	Floor	1,100	10,00,000
13	Smoke Test	65	Each	2,500	1,62,500
			Floor	,)-)
14	Miscellaneous	65	Each	1,60,000	1,04,00,000
	Ser. + Lin		Floor	Vin	
	19.00' 66	Call Cal Cal			
15	TOTAL COST (₹)	26,80,75,925 ₹			

Table 1. Total Cost of Project.

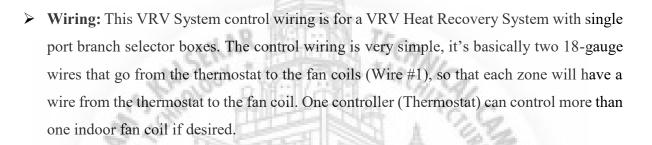
Note: It is the rough calculation of entire building of 65 floor based on external source, actual cost may be vary as compared with roughly estimated cost.

NAVI MUMBAL - INDIA

CHAPTER 4

4. DESIGNING METHODOLOGY:

4.1. Steps of Methodology


The following are steps followed by industries for designing VRV system

- Site visit of engineer: the site engineer visits the site and analyze the site and gets the architectural layout.
- > Area measurement: This involves calculation of area which requires cooling.
- Heat and cooling load Calculation: Heating and cooling load are calculated considering outdoor condition, heat gain through wall, ceiling, roof etc. Heat load calculation is a fundamental skill for HVAC designers and consultants. Consider that space cooling is among the highest energy expenses in buildings, especially during the summer. However, to properly size a space cooling system, first we must know the amount of heat that must be removed this is precisely the purpose of heat load calculation. Heat in buildings can come from internal sources such as electrical appliances, or from external sources such as the sun, heat gain through wall, ceiling, roof. A heat load calculation considers all sources present and determines their total effect.
- Selection of indoor & outdoor unit, line of piping: Based on the heat load calculated selection of indoor and outdoor unit is done. As per the selected outdoor and indoor units pipe dimensions for main line and branches is done using DAIKIN manual.
- Layouts & drafting: The layout of line of piping from outdoor to indoor is created using drafting software like Auto CAD. the layout drawing is a running record of ideas and problems posed as the design evolves. In most cases the layout drawing ultimately

becomes the primary source of information from which detail drawings and assembly drawings are prepared by other draftsman under the guidance of the designer.

- Purchasing and BOQ: Purchasing is a business or organization attempting to acquire goods or services to accomplish its goals. Although there are several organizations that attempt to set standards in the purchasing process, processes can vary greatly between organizations. The purchasing department purchase the materials required like steel sheets for ducts, cooper pipes.
- Material procurement: Procurement is a term describing the purchasing process for goods and services. In material procurement is the process by which the materials required are selected, ordered, invoiced, paid for and delivered to the site. procurement typically includes expediting, supplier quality, and transportation and logistics
- Segregation: it involves systematic sorting of material and storing it using various work place organization technique to save space and time.
- Drain line/Condensate line: The condensate line is one of the most important components of your HVAC system. Your condensate line, also known as a condensate drain line or condensate drain does several jobs, but none are more critical to the functionality of your appliance than draining excess moisture outside of your home. It is of particular importance during periods of heavy heating or cooling. As air is heated or cooled inside your HVAC system, humidity is released. This humidity eventually turns into condensate line is essentially a drain line. It's typically made out of plastic (commonly PVC) or sometimes metal, although plastic is preferable. It connects directly to the HVAC unit then leads outdoors, often through an exterior wall. Its function is to efficiently funnel condensation away from your HVAC unit; sometimes a small pump is attached to the HVAC system to expedite the process, but most condensate lines utilize gravitational force.

Machine hanging & copper piping: supporting bolts is structure used to hang the indoor cassette and branch header and other machine components. Two cooper pipelines are used one is gas line and other is liquid line, which is connected between outdoor and indoor units. The pipes have varying cross-section which is gradually decreasing from outdoor unit to indoor unit

- Leak detection: Due to refrigerant leakage, the running time of the system increases continuously. Both suction as well as discharge pressures reduce due to loss of refrigerant. There will be less liquid and more flash gas, which has negative effect on several components of the system. Following are different method of refrigerant leakage detection: Visual Inspection, Soap Water Detection, Water Immersion Method, Halide Torch, Dye Interception Method, Electronic Leak Detection, Ultrasonic Leak Detection, Fluorescent Leak Detection, Nitrogen Water Detection, Gas Pressure Detection
- Insulation: After determining that there are no leaks in the refrigerant pipes are insulated. Insulation is done around the entire surface of each pipe, including the refrigerant pipes from the indoor unit to the service valves inside the outdoor unit, the branch joints, distribution header, and connection points on each pipe.
- Vacuum: In a refrigerant system, only the refrigerant and oil should be circulating. During servicing or after many years of operation, the air may enter the system. The air from the atmosphere that enters the system include oxygen, nitrogen and moisture. These unwanted components will cause Rise in head pressure, Acids are produced in the refrigerant causing

electroplating and damage to the motor insulation, Sludge is formed by a combination of oil, acid and moisture in the system. In order to remove all the unwanted moisture and gases from the refrigerant system, a state of near vacuum has to be achieved in which the pressure in the system is forced to go below the atmospheric pressure.

- Commissioning and testing: The commissioning process of any installation is critical as it provides official certification and confirmation that a piece of equipment is performing as it should. For our VRV systems, the commissioning process begins with a pressure test using nitrogen to find leaks, testing the system at a certain level. It is kept in this condition for a minimum of 24 hours to ensure it can maintain the same pressure level before the nitrogen is allowed to die out. This first section consists of three elements – a leak test, a pressure test and a strength test.
- > Payment by customer: Online or offline mode payment.
- Hand over to customer. Before hand overring it to the customer the system is fully checked by the professional engineer DAIKIN. If all the terms and conditions are satisfied then the system is hand over and warranty is retained else it is found any misused and any improper handling by the customer it voids the warranty.

NAVI MUMBAL - INDIA

CHAPTER 5

5. Theory of VRF System

5.1 Introduction of Air-conditioning System

Air conditioning (often referred to as AC. A/C, or air con) is the process of removing heat and moisture from the interior of an occupied space, to improve the comfort of occupants. Air conditioning can be used in both domestic and commercial environments. This process is most commonly used to achieve a more comfortable interior environment. typically for humans and other animals; however, air conditioning is also used to cool/dehumidify rooms filled with heat-producing electronic devices, such as computer servers, power amplifiers, and even to display and store some delicate products, such as artwork

Air conditioners often use a fan to distribute the conditioned air to an occupied space such as a building or a car to improve thermal comfort and indoor air quality.

Electric refrigerant-based AC units range from small units that can cool a small bed- room, which can be carried by a single adult, to massive units installed on the roof of office towers that can cool an entire building. The cooling is typically achieved through a refrigeration cycle, but sometimes evaporation or free cooling is used. Air conditioning systems can also be made based on desiccants (chemicals which re move moisture from the air). Some AC systems reject or store heat in subterranean pipes.

In the most general sense, air conditioning can refer to any form of technology that modifies the condition of air (heating, (de-) humidification, cooling, cleaning, ventilation, or air movement). In common usage, though. "air conditioning" refers to systems which cool air. In construction, a complete system of heating, ventilation, and air conditioning is referred to as HVAC.

5.2 what is VRV system

Variable Refrigerant Volume (VRV) system is an air conditioning system which uses refrigerant as a medium to provide zonal cooling and heating. It varies the flow of refrigerant to each room as per the required condition. the compressor used is driven by inverter so that by changing the speed of compressor the flow of refrigerant can be varied hence, the variable flow system. This ability to control the flow of refrigerant makes the VRV system ideal for applications with varying load or where zonal heating and cooling is desired. VRV systems provide design flexibility, energy savings, and cost-effective installation along with superior comfort.

5.3 Types of VRV system

5.3.1. Heat Pumps system - 2 pipes

VRV heat pump systems commonly known as 2 pipes, permit heating or cooling in all of the indoor units but NOT simultaneous heating and cooling. When the indoor units are in the cooling mode, they act as evaporators; when they are in the heating mode, they act as condensers.

Figure 5-1. Cooling from Outdoor Unit to Different Section

VRV heat pump systems are effectively applied in open plan areas, retail stores, cellular offices and any other area that require cooling or heating during the same operational periods.

5.3.2. Heat Recovery System - 3 pipes

Variable refrigerant volume systems with heat recovery (VRV-HR) capability can operate simultaneously in heating and/or cooling mode, enabling heat to be used rather than rejected as it would be in traditional heat pump systems. Each indoor unit is branched off from the 3 pipes using solenoid box which contains a series of valves. An indoor unit requiring cooling will open its liquid line and suction line valves and act as an evaporator. An indoor unit requiring heating will open its hot gas and liquid line valves and will act as a condenser. Typically, extra heat exchangers in distribution boxes are used to transfer some reject heat from the superheated refrigerant exiting the zone being cooled to the refrigerant that is going to the zone to be heated. This balancing act has the potential to produce significant energy savings. Three pipe heat pump systems are effectively applied in open plan areas, retail stores, cellular offices and any other area that require cooling and heating at the same time.

Figure 5-2. Heating and Cooling at Different Section from Outdoor Unit

5.3.3. VRV Water Cooled

Most commonly used are air-cooled systems, using packaged outdoor condensing units, which via refrigeration pipework connect to a number of indoor units. There are however some limitations, pipework runs, mainly vertical risers (although Samsung can have a vertical rise up to 115 meters), plant space and noise. Where these become an issue then water-cooled systems can be used. They operate as the Air-cooled units, but instead of having a built-in air-cooled heat exchanger they utilise and plate heat exchanger, which transfers the energy into a water loop.

Figure 5-3.VRV Water Cooling

This is connected to a cooling tower or dry cooler which transfers the energy/ heat to atmosphere. Due to this process the water cooled VRV systems can be placed internally with no worry about the vertical risers, in much smaller areas, taking up less space and can be attenuated to meet most environmental requirements. These systems are also ideal for building served by an existing landlords condenser water loop

5.4 Components of VRV system

5.4.1 Outdoor unit:

In a VRV system, multiple indoor fan coil units may be connected to one outdoor unit. The outdoor unit has one or more compressors that are inverter driven, so their speed can be varied by changing the frequency of the power supply to the compressor. As the compressor speed changes, so does the amount of refrigerant deliver by the compressor.

Types of outdoor unit:

- > Top Discharge ODU. Where, ODU stands for Outdoor Unit
- Side Discharge ODU.
- ➢ Higher Efficiency ODU.
- Medium Normal Range ODU.

Figure 5-4. Outdoor Unit

5.4.2. Indoor unit

The indoor unit of the split air conditioner is a box type housing in which all the important parts of the air conditioner are enclosed. The most common type of the indoor unit is the wall mounted type though other types like ceiling mounted and floor mounted are also used. An indoor unit containing the evaporator coil and blower. Split-system central air conditioning is most popular type of residential heating and air-conditioning.

Types of indoor units

Figure 5-5.Indoor Unit

4-way cassette type - Extremely quite operation By employing a super-high-stream turbo fan (three- dimensional twisted wing large bore and high efficiency), the wind flow of efficiency has been improved with the under damping slit mounted near the center of the revolving shaft, the abnormal noise which is unique to DC motors caused by the number

IR@AIKTC-KRRC

DESIGN OF VRV SYSTEM

of magnetic poles and revolution speed of the motor, is reduced, With broad range of air supply, is suitable to be used

Figure 5-6. 4-way cassette

Compact 4-way cassette type - Installing the Mini 4 Way Cassette is easy. This compact air conditioning unit can fit into one standard ceiling tile measuring 600 W x 600 D, meaning that alterations are unnecessary. With no extra construction work to carry out, set-up time is reduced, as is the subsequent financial impact on businesses.

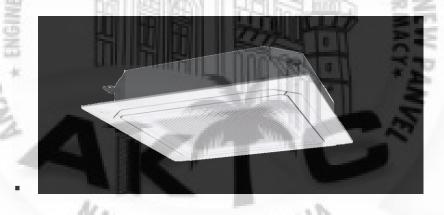


Figure 5-7. Compact 4-way cassette

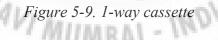

2-way cassette type- The two-way cassette discharges in two directions. The two way is ceiling mounted and includes its own filter system. The ceiling-cassette indoor units in these duct-free split heat-pump systems provide comfort in large, open spaces. One-way air-flow ceiling-cassette indoor units.

Figure 5-8. 2-way cassette

I-way cassette type- At a height of only 135mm, the Slim *1Way Cassette* is the world's thinnest indoor air-cooling unit. The compact, lightweight design makes installation and maintenance in your space easier than ever. These high-performing units are so subtle that they can easily blend into interiors of all *types* and styles.

Concealed duct, standard type- Type and size of outdoor units and indoor units, and input air flow and external static pressure (ESP) for ducted indoor ... Heating and Cooling Equipment Standard for Safety and bear the ... Ceiling-Concealed Ducted units are designed for air volume against ... Cooling range can be extended from 5°F down to -4°F

DESIGN OF VRV SYSTEM

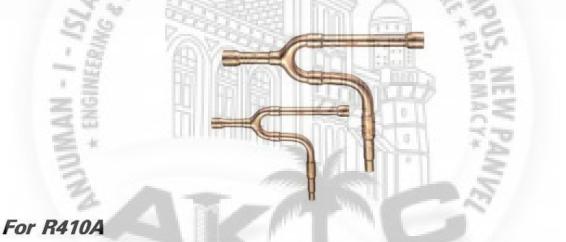


Figure 5-10. Concealed Duct Type

5.4.3 Raffinates (Y-joint):

Raffinates is usually called as Y-joint. Which is used to branching the pipes from outdoor unit to indoor unit. It is made up of copper with insulation cover which may protect the leakage of refringent. It is available in many sizes as per the requirement.

This joint is mainly placed between the indoor AC units & branch to the others. It is always placed parallel to the surface in order to prevent pressure loss.

SIZE	Main ID	Secondary ID	Outlet ID
CMY-Y100VBK2-1	1 1/8	7/8 1 1/8	7/8
CMY-Y100VBK2-2	5/8	1/2 3/8	1/2 7/8
CMY-Y200VBK2-1	1 5/8 1 1/4	1 1/8	1 1/8
CMY-Y200VBK2-2	3/4	5/8 1/2	5/8 1/2
CMY-Y300VBK2(1)-1	1 5/8 1 1/2	1 3/8	1 1/8 7/8
CMY-Y300VBK2(1)-2	3/4	3/4	5/8 1/2 3/8
CMY-Y300VBK2(2)-1	1 3/8	1 1/8	1 1/8 7/8
CMY-Y300VBK2(2)-2	3/4	5/8	1/2 5/8

Figure 5-11. Raffinates (Y-joints)

5.4.4 Copper Pipes:

Copper tubing is most often used for the supply of hot and cold tap water, and as a refrigerant line in HVAC systems. There are two basic types of copper tubing, soft copper and hard copper. Copper tubing is joined using flare connection, compression connection, or solder.

Soft Drawn Copper Tubes Coils, Pipes:

Soft drawn, annealed, bending type copper tubes, coils, pipe for various gauge, length, size, surface finish with high quality. Suitable for VRF, VRV, Air-conditioner, Chiller applications.

Figure 5-12. Soft Drawn copper pipe

Hard Drawn Copper Pipes:

These type of copper tubes are rigid, hard and stiff. It is not easy to bent and should not be bent. There are three standard weight with different wall thickness for each type. Type K has the thickest wall tubing followed by Type L and Type M. Type L outer diameters typically starts from 3/8 inch followed by 1/2-inch, 5/8-inch, 3/4-inch, 7/8-inch, 11/8-inch, 13/8-inch, 15/8-inch, 21/8 inch and 25/8 inch.

Figure 5-13. Hard Drawn Copper Pipes

5.4.5 Insulation:

Insulation is to prevent heat transfer between refrigerant and surrounding air. Under cooling mode of VRV system, the optimum insulation thickness varies between 7 and 8 mm for pipe sections of low-pressure gas pipeline and low-pressure liquid pipeline.

CHAPTER 6

6. HEAT LOAD CALCULATION

6.1 Method of heat load estimation

Step One >

Calculate the area in square feet of the space to be cooled

> Step Two

Calculate CFM ventilation

CFM ventilation= (area x height x no of air change)/60

CFM person= (no person x CFM/person)

Select the higher of the two as CFM ventilation for calculation

Step three \geq

Find difference in DB temperature as well as GR/LB of inside and outside

MIIN

By referring ISHRAE handbook and psychometric chart I - INDIA

Step four

Calculate sun heat gain

Solar gain through glass (BTU) =area x temp difference x factor (BTU)

Other transmission gain (BTU) = area x temp difference x factor (BTU)

Bypass outside air sensible load (BTU) = CFM ventilation x 0.08 x 1.08 x temperature difference

get factor from ISHRAE handbook table 12

➤ <u>Step five</u>

Calculate internal sensible heat (BTU)

heat generated by occupants (BTU) = number of people x 245

Heat generated by appliances (BTU) = total equipment watts x 3.4

Heat generated by lights = (BTU) total equipment watts x 3.4

Total heat load (BTU) = solar gain through glass (BTU)+ other transmission gain (BTU)+ bypass outside air sensible load (BTU)+ internal sensible heat (BTU)

Leak loss (BTU) = 5% total heat load

Safety factor (BTU) = 5% total heat load

Total room sensible heat = Total heat load (BTU)+ Leak loss (BTU) + Safety factor (BTU)

Step Six

Calculate outside air latent load (BTU) =CFM ventilation x G difference x bypass factor x 0.68

Internal latent heat (BTU) =no of people x factor

Get factor from ISHRAE handbook table 12

Subtotal (BTU) = outside air latent load (BTU) + Internal latent heat (BTU)

Safety factor (BTU) = 5% sub total

Total room latent heat = Subtotal (BTU) + Safety factor (BTU)

Room total heat = Total room sensible heat+ Total room latent heat

➢ Step seven

Outside air heat = CFM ventilation x G. Difference x (1-B.F.) x factor

Heat gain safety (a) 3% = 3% Room total heat

Grand total heat (BTU) = Room total heat+ Outside air heat+ Heat gain safety @ 3%

Grand total heat (TONS) = Grand total heat (BTU)/12000

Step eight

Sensible heat factor = Total room sensible heat/ Room total heat

Selected ADP= (ISHRAE table 15)

Dehumidified rise = (1-B.F.) (Temp difference – ADP)

Dehumidified air CFM = Total room sensible heat/ (1.08 x Dehumidified rise)

Tons as per CFM = Dehumidified air CFM/400

Step nine

Check results

Grand total heat (BTU/HR/SQFT) = Grand total heat/area

VAVI

Room sensible heat (BTU/HR/SQFT) = Room sensible heat/area

SQFT/ person = area/no of person

TONS/person = Grand total heat (TONS)/ no of person

Dehumidified CFM/ TONS = Dehumidified air CFM/ Grand total heat (TONS)

Area/TONS = area/ Grand total heat (TONS)

6.2 Heat load estimation

The heat load for each room on the office floor is calculated using the method as shown above an is displayed in the tables below b

DESIGN CONDITION, DESIGN DETAIL:

Design location:

Location: Four Seasons Residency Gandhi Nagar Upper Worli Mumbai, Maharashtra 400018.

Latitude: 18.99° North. 72.82° East

Design Data:

SR.	NAME OF	AREA	HEIGHT	LIQHTING	NO. OF	CFM/VENTILATION
NO.	ROOM	(SQFT)	(FOOT)	(W/SQFT)	AIR CHANGE	ARN
1.	MASTER BEDROOM	315	11	1.5	2	115
2.	GUEST BEDROOM 2	174	11	1.5	2	64
3.	GUEST BEDROOM 3	218	11	1.5	2	80
4.	LIVING ROOM	1248	11	1.5	2	458
5.	ALL BATHROOM	226	11	1.5	2	83

Table 2. CFM/Ventilation Calculation on the Basis of Area.

ING M U

Calculate CFM ventilation:

CFM Ventilation = $\frac{(\text{Area} \times \text{Height of the area} \times \text{Lighting} \times \text{No.of air change})}{60}$

Where,

CFM= Air flow in cubic feet per minute

SR	NAME OF ROOM	CFM /PERSON	NO. OF PERSON	CFM/VENTILATION
NO.				
1.	MASTER	10	5	50
	BEDROOM	e	5	
2.	GUEST	10	2	20
	BEDROOM 2	. NR 181	2	
3.	GUEST	10	3	30
	BEDROOM 3	00 . 1991	Contraction Contraction	t,
4.	LIVING ROOM	10	8	80
5.	ALL BATHROOM	10	6	60

Table 3. CFM/Ventilation Calculation on the Basis of No. of Persons.

CFM Ventilation= CFM/person × No. of person

Design Condition:

PARAMETER	D.B.(F ^o)	W.B.(F°)	%RH	GR/LB
OUTSIDE	100	83	60	146
INSIDE	75		50	64
DIFFERENCE	25	MBAI - IM	-	82

Table 4. Design Condition.

6.2.1 MASTER BEDROOM

> <u>SENSIBLE HEAT GAIN:</u>

SOLAR GAIN- GLASS					
DIRECTION	AREA	T.DIFF.	FACTOR	BTU	
NORTH	0	23	0.56	0	
SOUTH	169	12	0.56	1135	
EAST	267	12	0.56	1795	
WEST	0	163	0.56	0	
N-E	0	12	0.56	0	
N-W	0	138	0.56	0	
S-E	0	12	0.56	0	
S-W	0	85	0.56	0	

SOLAR & TR	ANSMISS	SION GAI	N-WALL	
NORTH	0	15	0.35	0
SOUTH	0	27	0.35	0
EAST	0	29	0.35	0
WEST	267	23	0.35	2149.9
N-E	0	21	0.35	0
N-W	0	17	0.35	0
S-E	0	29	0.35	0
S-W	0	25	0.35	0
ROOF	0	43	0.46	0
ROOF INSU	0	43	0.11	0

	111	14.		101.
OTHER TRAN	ISMISSION	J GAIN	MRA1	- IMA
AGLS	40	26	1.13	1175
PART	320	21	0.31	2083
CEIL	0	21	0.44	0
FLOR	0	21	0.44	0

BYPASS O.A. SENSIBLE LOAD				
<u>CFM</u>	T.DIFF.	<u>BYPASS</u>	FACTOR	BTU
115	26	0.12	1.08	389

INTERNAL S	SENSIBL	E LOAD		
PEOPLE	2	275		550
APPL.	5	3.4	A	17
LIGHTS	8	3.4	1.25	34
FOOD	0	60		0
SUB TOTAL				9328
		EKAN.	APPEr H	ECHN

LEAK LOSS +SAFETY FACTOR=5%	1166
ROOM SENSIBLE HEAT	10493

► LATENT HEAT:

<u>CFM</u> <u>G</u> .	DIFF BY	PASS FAC	TOR BTU
115.4 84	0.12	2 0.68	791

INTERNAL LA	TENT LOAI)		
PEOPLE	2	190	380	

	and the second second
SUB TOTAL	1171
SAFETY FACTOR=5%	59
ROOM LATENT HEAT	1229
ROOM TOTAL HEAT	11723
	1992 B

GRAND TOTAL HEAT:

OUTSIDE AIR HEAT							
	<u>CFM</u>	<u>G. DIFF</u>	<u>1-</u>]	<u>3.F.</u>	FACTOR	<u>BTU</u>	
SENSIBLE	115.4	26	0.8	38	1.08	2851	
LATENT	115.4	84	0.8	38	0.68	5799	
SUB TOTAL	8649						
TOTAL	20372						
HEAT GAIN SAFE	TY FAC	CTOR @ 3%	<i></i>	2		611	
GRAND TOTAL HEAT (TONS) 1.7486 20983						20983	
			24	C) 1	-		

SENSIBLE HEAT FACTOR	0.8951
SELECTED A.D.P.	50
DEHUMIDIFIED RISE	19.36
DEHUMIDIFIED AIR Cfm	501.87
TONS AS PER Cfm	1.2547
い、「「ないのでのない」	

GRAND TOTAL HEAT (BTU/HR/SQFT.)	66.693
ROOM SENSIBLE HEAT (BTU/HR/SQFT.)	33.352
SQFT/PERSON	157.31
TONS PER SQFT	0.0056
CFM PER SQFT	1.5951
TONS/PERSON	0.8743
DEHUMIDIFIED CFM/TON	287.01
AREA PER TON	179.93

Table 5. Master Bedroom.

6.2.2. GUEST BEDROOM 2

> <u>SENSIBLE HEAT GAIN:</u>

-

SOLAR GAIN-GLASS					
DIRECTION	AREA	T.DIFF.	FACTOR	BTU	
NORTH	0	23	0.56	0	
SOUTH	118	12	0.56	792	
EAST	0	12	0.56	0	
WEST	0	163	0.56	0	
N-E	0	12	0.56	0	
N-W	0	138	0.56	0	
S-E	0	12	0.56	0	
S-W	0	85	0.56	0	

OTHER TRA	NSMISSI	ON GAIN	2224	
AGLS	40	26	1.13	1175
PART	320	21	0.31	2083
CEIL	0	21	0.44	0
FLOR	0	21	0.44	0

BYPASS O.A. SENSIBLE LOAD						
<u>CFM</u> <u>T.DIFF.</u> <u>BYPASS</u> <u>FACTOR</u> <u>BTU</u>						
73	25	0.08	1.08	158		

INTERNAL SENSIBLE LOAD						
PEOPLE	7	245		1715		
APPL.	250	3.4	MBAY	850		
LIGHTS	300	3.4	1.25	1275		
FOOD	0	60		0		
SUB TOTAL	1			7915		

LEAK LOSS +SAFETY FACTOR=5%	396
ROOM SENSIBLE HEAT	8707

► <u>LATENT HEAT:</u>

BYPASS OUTSIDE AIR LATENT LOAD					
CFMG. DIFFBYPASSFACTORBTU					
63.9	26	0.12	1.08	215	

INTERNAL L	ATENT LOA	D	-	
PEOPLE	2	275	550	
APPL.	5	3.4	17	
LIGHTS	4	3.4	17	Gu
	of as	1	2.1	RCH

and the second se	the second se
SUB TOTAL	7951
SAFETY FACTOR=5%	994
ROOM LATENT HEAT	8944

GRAND TOTAL HEAT:

20

OUTSIDE AIR H	IEAT				13
NON	<u>CFM</u>	<u>G. DIFF</u>	<u>1-B.F.</u>	FACTOR	BTU
SENSIBLE	63.91	26	0.88	1.08	1579
LATENT	63.91	84	0.88	0.68	3213
SUB TOTAL		1			4792
TOTAL	0		1		14595
HEAT GAIN SAFETY FACTOR @ 3%				1	438
GRAND TOTAL HEAT			(TONS)	1.25	15033

SENSIBLE HEAT FACTOR	0.912
SELECTED A.D.P.	50
DEHUMIDIFIED RISE	19.36
DEHUMIDIFIED AIR Cfm	427.8
TONS AS PER Cfm	1.069

GRAND TOTAL HEAT (BTU/HR/SQFT.)	86.24
ROOM SENSIBLE HEAT (BTU/HR/SQFT.)	51.31
SQFT/PERSON	87.16

TONS PER SQFT	0.007
CFM PER SQFT	2.454
TONS/PERSON	0.626
DEHUMIDIFIED CFM/TON	341.5
AREA PER TON	139.1

6.2.3. GUEST BEDROOM 3

> <u>SENSIBLE HEAT GAIN:</u>

SOLAR GAIN-GLASS				
DIRECTION	AREA	T.DIFF.	FACTOR	BTU
NORTH	0	23	0.56	0
SOUTH	177	12	0.56	1188
EAST	0	12	0.56	0
WEST	177	163	0.56	16132
N-E	0	12	0.56	0
N-W	0	138	0.56	0
S-E	0	12	0.56	0
S-W	0	85	0.56	0

SOLAR & TR	ANSMISS	ION GAIN	-WALL	
NORTH	0	15	0.35	0
SOUTH	0	27	0.35	0
EAST	126	29	0.35	1276
WEST	0	23	0.35	0
N-E	0	21	0.35	0
N-W	0	17	0.35	0
S-E	0	29	0.35	0
S-W	0	25	0.35	0
ROOF	0	43	0.46	0
ROOF INS	0	43	0.11	0

	NA	10		10
OTHER TRAN	SMISSION	GAIN	MRA1	- IMA
AGLS	40	26	1.13	1175
PART	320	21	0.31	2083
CEIL	0	21	0.44	0
FLOR	0	21	0.44	0

BYPASS O.A. SENSIBLE LOAD

CFM	<u>T.DIFF.</u>	<u>BYPASS</u>	FACTOR	BTU
79.9	26	0.12	1.08	269

INTERNAL SENSIBLE LOAD				
PEOPLE	2	275		550
APPL.	5	3.4		17
LIGHTS	4	3.4	1.25	17
FOOD	0	60		0
SUB TOTAL	/			22707
	INR REAL TES			

LEAK LOSS +SAFETY FACTOR=5%	2838
ROOM SENSIBLE HEAT	25545

► LATENT HEAT:

BYPASS C	OUTSIDE AIR	and the second second		1 65
<u>CFM</u>	<u>G. DIFF</u>	BYPASS	FACTOR	BTU
79.9	84	0.12	0.68	547.62
1	ų i			- Anna

PEOPLE	3	190	570.00
--------	---	-----	--------

SUB TOTAL	1117.62
SAFETY FACTOR=5%	55.88
ROOM LATENT HEAT	1173.50
ROOM TOTAL HEAT	26718.93

GRAND TOTAL HEAT:

AT: MUMBAI - INDI

OUTSIDE AIR HEAT					
	<u>CFM</u>	<u>G. DIFF</u>	<u>1-B.F.</u>	FACTOR	BTU
SENSIBLE	79.9	26	0.88	1.08	1974.19
LATENT	79.9	84	0.88	0.68	4015.87
SUB TOTAL					5990.06
TOTAL					32708.99

HEAT GAIN SAFETY FACTOR @ 3%			981.27
GRAND TOTAL HEAT	(TONS)	2.808	33690.26

SENSIBLE HEAT FACTOR	0.96
SELECTED A.D.P.	50.00
DEHUMIDIFIED RISE	19.36
DEHUMIDIFIED AIR Cfm	1221.76
TONS AS PER Cfm	3.05
GRAND TOTAL HEAT (BTU/HR/SQFT.)	154.62
ROOM SENSIBLE HEAT (BTU/HR/SQFT.)	117.24
SQFT/PERSON	72.63
TONS PER SQFT	0.01
CFM PER SQFT	5.61
TONS/PERSON	0.94
DEHUMIDIFIED CFM/TON	435.17
AREA PER TON	71.34

Table 7. Guest Bedroom 3.

NAVI MUMBAL - INDIA

6.2.4. LIVING ROOM

> <u>SENSIBLE HEAT GAIN:</u>

SUN GAIN:

SOLAR GAIN- SOLAR					
DIRTECTION	AREA	T.DIFF.	FACTOR	BTU	
NORTH	314	23	0.56	4047	
SOUTH	0	12	0.56	0	
EAST	569	12	0.56	3827	
WEST	0	163	0.56	0	
N-E	0	12	0.56	0	
N-W	0	138	0.56	0	
S-E	0	12	0.56	0	
S-W	0	85	0.56	0	
30	- <u>2</u> 3	See.	歸服	89 /	
1.00 1.00	100	Start Starting	and the second second		

SOLAR & TR	ANSMIS	SION GA	IN -WALL	
NORTH	0	15	0.35	0
SOUTH	314	27	0.35	2969
EAST	0	- 29	0.35	0
WEST	350	23	0.35	2814
N-E	0	21	0.35	0
N-W	0	17	0.35	0
S-E	0	29	0.35	0
S-W	0	25	0.35	0
ROOF	0	43	0.46	0
ROOF INS	0	43	0.11	0

NAVI MUMBAL - INDIA

OTHER TRANSMISSION GAIN					
AGLS	40	26	1.13	1175	
PART	320	21	0.31	2083	
CEIL	0	21	0.44	0	
FLOR	0	21	0.44	0	

ir.aiktclibrary.org

BYPASS O.A. SENSIBLE LOAD				
<u>CFM</u>	<u>T.DIFF.</u>	<u>BYPASS</u>	FACTOR	<u>BTU</u>
458	26	0.12	1.08	1542

INTERNAL SI	ENSIBLE	LOAD		
PEOPLE	8	275	4	2200
APPL.	5	3.4	E SI	17
LIGHTS	12	3.4	1.25	51
FOOD	0	60	Mill: N	0
SUB TOTAL	.15	10.0	and the state	20725

1 100 D 1001	111.14
LEAK LOSS +SAFETY FACTOR=5%	2591
ROOM SENSIBLE HEAT	23316

► LATENT HEAT:

60

CFM	G. DIFF	BYPASS	FACTOR	BTU
457.7	84	0.12	0.68	3137

INTERNAL	LATENT	LOAD	Contraction of the second	
PEOPLE	8	190	1520	

SUB TOTAL	4657
SAFETY FACTOR=5%	233
ROOM LATENT HEAT	4890
ROOM TOTAL HEAT	28206

➢ <u>GRAND TOTAL HEAT:</u>

OUTSIDE AIR HI	EAT				
	<u>CFM</u>	<u>G. DIFF</u>	<u>1-B.F.</u>	<u>FACTOR</u>	<u>BTU</u>
SENSIBLE	457.7	26	0.88	1.08	11309
LATENT	457.7	84	0.88	0.68	23004

SUB TOTAL				34313
TOTAL				62519
HEAT GAIN SAFE	TY FACTOR @			
3%	-			1876
GRAND TOTAL H	EAT	(TONS)	5.37	64395

SENSIBLE HEAT FACTOR	0.827
SELECTED A.D.P.	50
DEHUMIDIFIED RISE	19.36
DEHUMIDIFIED AIR Cfm	1115
TONS AS PER Cfm	2.788
CERAN HE	to the section

the second se	
GRAND TOTAL HEAT (BTU/HR/SQFT.)	51.59
ROOM SENSIBLE HEAT (BTU/HR/SQFT.)	18.68
SQFT/PERSON	156
TONS PER SQFT	0.004
CFM PER SQFT	0.893
TONS/PERSON	0.671
DEHUMIDIFIED CFM/TON	207.8
AREA PER TON	232.6

Table 8. Living Room.

NAVI MUMBAL - INDIA

0

1

6.2.5. TOTAL BATHROOMS

SENSIBLE HEAT GAIN: SUN GAIN:

SOLAR GAIN	- GLASS			
DIRECTION	AREA	T.DIFF.	FACTOR	BTU
NORTH	0	23	0.56	0
SOUTH	169	12	0.56	1135
EAST	0	12	0.56	0
WEST	78.5	163	0.56	7170
N-E	0	12	0.56	0
N-W	0	138	0.56	0
S-E	0	12	0.56	0
S-W	0	85	0.56	0
51	9 80	E	E	

SOLAR & TH	RANSMIS	SION GA	IN -WALL	11111 6=
NORTH	287	15	0.35	1507
SOUTH	118	27	0.35	1115
EAST	216	29	0.35	2192
WEST	137	- 23	0.35	1106
N-E	0	21	0.35	0
N-W	0	17	0.35	0
S-E	0	29	0.35	0
S-W	0	25	0.35	0
ROOF	0	43	0.46	0
ROOF INS	0	43	0.11	0

			_	100
OTHER TR	ANSMISSIC	ON GAIN		040
AGLS	40	26	1.13	1175
PART	320	21	0.31	2083
CEIL	0	21	0.44	0
FLOR	0	21	0.44	0

BYPASS O.A. S	SENSIBLE	LOAD		
<u>CFM</u>	T.DIFF.	BYPASS	FACTOR	BTU

83 26 0.12 1.08 280

INTERNAL SE	NSIBLE L	OAD		
PEOPLE	2	275		550
APPL.	5	3.4		17
LIGHTS	16	3.4	1.25	68
FOOD	0	60	- A -	0
SUB TOTAL	•	1	-	18398

LEAK LOSS +SAFETY FACTOR=5%	2300
ROOM SENSIBLE HEAT	20698

► LATENT HEAT

<u>CFM</u>	<u>G. DIFF</u>	BYPASS	FACTOR	BTU
83	84	0.12	0.68	569

PEOPLE	1 1 1 1		1140
PEOPLE	6	-190	1140

SUB TOTAL	22493
SAFETY FACTOR=5%	85
ROOM LATENT HEAT	1794
ROOM TOTAL HEAT	22493

GRAND TOTAL HEAT:

<u>GRAND TOTAL H</u>	IEAT:	Vien		1000				
OUTSIDE AIR HI	EAT	. WOW	ABAT .	- fite .				
	<u>CFM</u>	G. DIFF	<u>1-B.F.</u>	FACTOR	BTU			
SENSIBLE	83	26	0.88	1.08	2051			
LATENT	83	84	0.88	0.68	4173			
SUB TOTAL		6224						
TOTAL	28717							
HEAT GAIN SAFETY FACTOR @ 3%								

ir.aiktclibrary.org

GRAND TOTAL HEAT (BTU/HR/SQFT.)	130.6		
ROOM SENSIBLE HEAT (BTU/HR/SQFT.)	91.42		
SQFT/PERSON	37.73		
TONS PER SQFT	0.011		
CFM PER SQFT	4.372		
TONS/PERSON	0.411		
DEHUMIDIFIED CFM/TON	401.6		
AREA PER TON	91.48		
GRAND TOTAL HEAT (TONS)	2.465	29578	

SENSIBLE HEAT FACTOR	0.92
SELECTED A.D.P.	50
DEHUMIDIFIED RISE	19.36
DEHUMIDIFIED AIR Cfm	989.9
TONS AS PER Cfm	2.475

Table 9. Total Bathrooms.

NAVI MUMBAL - INDIA

6.3. Summary:

			SUBJI	ECT: HEA	T LOAD	SUMMAR	AY SHEET			
	PROJECT:	FOUR SEASONS RESIDENTIAL 22,23, 27 & 35 FLOOR								
SR.	DISCRIPTION	TION Area Occupancy WATTS Fresh APPL. De	Dehumidified	Tonnage	Cfm/Ton	Tonnage				
			Nos.	Sq. Ft. CFM		WATTS.	air	REQ. (TR)		HP
1	MASTER BEDROOM	315	5	2	115	34	502	1.74	1.25	2
2	GUEST BEDROOM 2	174	2	2	64	17	428	1.25	1.07	2
3	GUEST BEDROOM 3	218	3	2	80	17	1222	3.05	3.05	3
4	LIVING ROOM	1248	8	2	458	51	1115	5.37	2.79	6
5	ALL BATHROOM	226	6 =	2	83	68	990	2.47	2.47	3
	TOTAL	2181	24	10	800	187	4257	13.88	10.63	16

Table 10. Result of Design.

NAVI MUMBAL - INDIA

IN

6.4. Selection of outdoor & Indoor Unit Capacity:

6.4.1 Outdoor unit:

SR.NO.	OUTDOOR UNIT	HP
1.	MMY-MAP2A7T8P	2
2.	MMY-MAP2A7T8P	2
3.	MMY-MAP3A7T8P	3
4.	MMY-MAP6A7T8P	6
5	MMY-MAP3A7T8P	3
TOTAL	16	
	Table 11. Selection of Outdoor	Unit.
5.4.2. Ind	oor unit:	1 Color

6.4.2. Indoor unit:

		Contract 1 and 1	A. 77.768	
SR NO	NAME OF ROOM	TYPE OF IDU & MODEL NO.	NOS. OF IDU	IDU HP
1.	MASTER BEDROOM	1-way cassette MMU- AP0364HP1-E	4	2HP
2.	GUEST BEDROOM 2	1-way cassette MMU- AP0274HP1-E		2HP
3.	GUEST BEDROOM 3	1-way cassette MMU- AP0274HP1-E	4	4HP
4.	LIVING ROOM	1-way cassette MMU- AP0274HP1-E	8	6HP
5.	ALL BATHROOM	1-way cassette MMU- AP0274HP1-E	6	4HP
TOTAL				18HP

 Table 12. Selection of Indoor Unit.

 $\frac{1 \text{INDOOR UNIT CAPACITY}}{\text{OUTDOOR UNIT CAPACITY}} \times 100 = \frac{18}{16} \times 100 = 112\%$ DIVERSITY

The outdoor unit & indoor unit models according to the capacity are selected from Toshiba catalogue.

In Toshiba there is a chance to get diversity up to 135% if numbers of occupants are increases in room it will not affects the efficiency of system.

6.5. Pipe Size and Details

Pipe material= copper

For outdoor unit connecting pipe (Model MMY-MAP14A7T8P pipe dimension selected

Gas side = \emptyset 28.6mm, Liquid side= \emptyset 15.9mm

Between ODU connection piping kits: - Gas side=Ø41.3mm, Liquid side=Ø22.2mm

IDU connection piping kit of header unit: - Gas side=Ø41.3mm, Liquid side=Ø22.2mm

- INDIA

Between 2 y-joints pipe size differs according to equivalent HP

IDU connecting pipe as per the capacity of IDU

RAFFNATES according to equivalent HP

ODU connecting kit selected as per the equivalent HP

<u>6.6. Insulation:</u> Standard insulation pipe thickness Supply pipe insulation=19mm Return pipe insulation=13mm

CHAPTER 07

7. VALIDATION OF RESULT

MASTER BEDROOM

DESIGN DATA		
AREA	=	314.62
HT.OF THE AREA	=	11
LIGHTING (WATTS/SQFT)	=	2
NO. OF AIR CHANGE REQUIRED	RE.	2
Cfm VENTILATION	12	115.36
Cfm/PERSON	-	5
NO. OF PERSON	28	2
Cfm VENTILATION		10
Cfm VENTILATION IN CAL.	(net	115.36
- 3 40 ALTS		CLOCK!

			10 Bridge	
2	<u>D.B.</u>	<u>W.B.</u>	<u>%RH</u>	<u>GR/LB</u>
OUTSIDE	98	83	Ve	149
INSIDE	72	- Fiel	55	65.0
DIFF.	26	In		84.0

NAVI MUMBAL - INDIA

HEAT LOAD SUMMARY	TR
GRAND TOTAL HEAT	1.0363
DEHUMIDIFIED AIR CFM	482.77
TON AS PER CFM	1.2069
TONNAGE REQUIRED	1.2069
ARCI CA	
CFM PER SQFT	1.5344
AREA PER TON	1.0094
N. B. 1997 M.A.	

	and the second se									
	BYPASS O.A. LATENT LOAD									
	CFM	G.DIFF	BYPASS	FACTOR	BTU					
	115.4	84	0.12	0.68	791					
and the second se										

		SUN GAIN				INTERNAL LATENT LOAD				
	AREA OR	T.DIFF. F	ACTOR	E	BTU/HR	PEOPLE 2 190	38			
SOLAR GAI	N-GLASS									
NORTH		23	0.56		0	SUB TOTAL	117:			
SOUTH	169	12	0.56		1135					
WEST	267	12	0.56		1795	SAFETY FACTOR=5%	59			
EAST		163	0.56		0	ROOM LATENT HEAT	1229			
N-E		12	0.56		0					
N-W		138	0.56		0	ROOM TOTAL HEAT	11323			
S-E		12	0.56		0					
S-W		85	0.56		0	OUTSIDE AIR HEAT				
			100	R	PET:	CFM G.DIFF 1-B.F. FACTOR				
SOLAR & TR	ANSMISSIC	N GAIN	200	-		SENS 10 26 0.88 1.08	247			
NORTH	1.5	15	0.35	1	0	LAT 10 84 0.88 0.68	503			
SOUTH	.5	27	0.35	H.	0					
WEST	20	29	0.35	PP-	0	SUBTOTAL	750			
EAST	267	23	0.35	22	2149.9	TOTAL	12073			
N-E	20	21	0.35	22	0					
N-W	12	17	0.35	52	0	HEAT GAIN SAFETY FACTOR @ 3%	362			
S-E	1.8	29	0.35	12	0					
S-W	. 55	25	0.35	183	0	GRAND TOTAL HEAT (TONS) 1.0363	12435			
ROOF	- 6	43	0.46	1	0	140 1442 ET				
ROOF INSU	28	43	0.11	1	0	1627-3 L 2 2 2				
	27		- ULUI	шц						
OTHER TRAI	SMISSION	GAIN				SENSIBLE HEAT FACTOR	0.8914			
AGLS	40	26	1.13		1175	SELECTED A.D.P.	50			
PART	320	21	0.31	- 10	2083	DEHUMIDIFIED RISE	19.36			
CEIL	· · · ·	21	0.44	1	0					
FLOOOR	-	21	0.44	1	0	DEHUMIDIFIED AIR CFM	482.77			
						TONS AS PER CFM	1.2069			
			VAVI		-	Alou				
			- av	M	UME	AI - INDIA				

IR@AIKTC-KRRC

DESIGN OF VRV SYSTEM

BYPASS O.A	A. SENSI	BLE LOAD	1
	CFM	T.DIFF	FACTOR

		ACTON	
10	26	0.12 1.08	34

INTERNAL SENS	SIBLE LC	AD		
PEOLE	2	275		550
APPL.	5	3.4		17
LIGHTS	8	3.4	1.25	34
EQUIP.LOAD		3.4		0
SUB TOTAL				8972
				1051
LEAK LOSS + SA	FETY FA	ACTOR = 12.5%	AA3	1122
ROOM SENSIB	LE HEAT	1921	1.0	10094

NAVI MUM

BAI - INDIA

CHECK RESULTS							
GRAND TOTAL HEAT (BTU/HR/SQFT)	39.524						
ROOM SENSIBLE HEAT (BTU/HR/SQFT)	32.083						
SQFT/PERSON	157.31						
TONS PER SQFT	0.0033						
CFM PER SQFT	1.5344						
TONS/PERSON	0.5181						
DEHUMIDIFIED CFM/TON	465.87						
AREA PER TON	260.68						

GUEST BEDROOM 2

DESIGN DATA								
AREA	=	174.31						
HT.OF THE AREA	=	11						
LIGHTING (WATTS/SQFT)	=	2						
NO. OF AIR CHANGE REQUIRED	=	2						
Cfm VENTILATION	=	63.914						
Cfm/PERSON	=	5						
NO. OF PERSON	=	2						
Cfm VENTILATION	=	10						
Cfm VENTILATION IN CAL.	=	63.914						
N.835								

	<u>D.B.</u>	<u>W.B.</u>	<u>%RH</u>	GR/LB
OUTSIDE	98	83	RN	149
INSIDE	72		55	65.0
DIFF.	26		Sector .	84.0

HEAT LOAD SUMMARY	TR
GRAND TOTAL HEAT	1.24
DEHUMIDIFIED AIR CFM	418
TON AS PER CFM	1.05
TONNAGE REQUIRED	1.24
CFM PER SQFT	2.4
AREA PER TON	0.87
TECH	
S. HAL	

1	CFM	G.DIFF	BYPASS	FACTO	BTU
÷	63.91	84	0.12	0.68	438

SUN GAIN									
-	AREA (DR T.DI	ACTOR	BTU/HR					
SOLAR GAIN-	GLASS								
NORTH	ž	23	0.56	0					
SOUTH	118	12	0.56	792					
WEST	5	12	0.56	0					
EAST	5	163	0.56	0					
N-E	Z.	12	0.56	0					
N-W	· 1	138	0.56	0					
S-E		12	0.56	0					
S-W		85	0.56	0					

	INTERNAL	LATENT LOAD	
PEOPLE	2	190	380
SUB TOTAL	0	N.	818
SAFETY FACTO	DR=5%	12	41
ROOM LATEN	IT HEAT	2	859
ROOM TOTA	HEAT	2	9599

NAVI MUMBAI - INDIA

IR@AIKTC-KRRC

DESIGN OF VRV SYSTEM

SOLAR & TRAN	SMISSION	GAIN					OUTSI	DE AIR H	IEAT		
NORTH		15	0.35		0		CFM	G.DIFF	1-B.F.	FACTO	R
SOUTH		27	0.35		0	SENS	63.91	26	0.88	1.08	157
WEST	212	29	0.35		2152.6	LAT	63.91	84	0.88	0.68	3213
EAST	118	23	0.35		948.47						
N-E		21	0.35		0	SUBTOTAL					4792
N-W		17	0.35		0	TOTAL					14393
S-E		29	0.35		0						
S-W		25	0.35		0	HEAT GAIN S	AFETY FACTO)R @ 3%)		432
ROOF		43	0.46	1	0	3					
ROOFINSU		43	0.11	1	0	GRAND TOTA	AL HEAT		(TONS)	1.24	14823
			110			M. TECI					
OTHER TRANS	VISSION G	AIN	26.	·* 3		SENSIBLE HE	AT FACTOR				0.911
AGLS	40	26	1.13	-9	1175	SELECTED A.I	D.P.				50
PART	320	21	0.31	쓰	2083	DEHUMIDIFI	ED RISE	~			19.3
CEIL	20	21	0.44	1	0		1. 07	1			
FLOOOR	20	21	0.44	1	0	DEHUMIDIF	ED AIR CFM	19			418
	26		233	1.15		TONS AS PEF	R CFM	1 3			1.045
BYPASS O.A. SE	NSIBLE LO	AD	22	500	1234		P TET	20	6		
	CFM T	DIFF F	ACTOR	163	23	DALLS		5	_		
	10	26	0.12	1.08	34	20153	THEN T	- 20			
	05			-	27	CHECK RESU	LTS	25	-		
INTERNAL SENS	SIBLE LOAD		m	1		GRAND TOTA	AL HEAT (BTU	/HR/SQI	-T)		85.04
PEOLE	2	275	200		550	ROOM SENS	IBLE HEAT (B	TU/HR/S	QFT)		50.14
APPL.	5	3.4			17	SQFT/PERSO	N	5			87.16
LIGHTS	4	3.4		1.25	17	TONS PER SC	QFT		2		0.007
EQUIP.LOAD	2	3.4	1.15	÷.,	0	CFM PER SQ	FT	129			2.398
SUB TOTAL	- /			6.4	7769	TONS/PERSC	DN				0.618
	-					DEHUMIDIFI	ED CFM/TO	N			338.4
LEAK LOSS + SA	FETY FACT	OR = 12	.5%		971	AREA PER TO)N				141.:
ROOM SENSIB	I E HEAT		KAV,		8740	I-IND	-				

GUEST BEDROOM 3

DESIGN DATA							
AREA	=	217.9					
HT.OF THE AREA	=	11					
LIGHTING (WATTS/SQFT)	=	2					
NO. OF AIR CHANGE REQUIR	=	2					
Cfm VENTILATION	=	79.89					
Cfm/PERSON	=	5					
NO. OF PERSON	=	3					
Cfm VENTILATION	=	15					
Cfm VENTILATION IN CAL.	R.	79.89					
CEW.	100	1-11					

OUTSIDE	98	83	- 66	149
INSIDE	72		55	65.0
DIFF.	26			84.0

	HEAT LOAD SUMMARY	TR	
	GRAND TOTAL HEAT	2.785	
	DEHUMIDIFIED AIR CFM	1209	
	TON AS PER CFM	3.023	
	TONNAGE REQUIRED	3.023	
	CFM PER SQFT	5.549	
	AREA PER TON	2.528	
1.153	Then		
COLUMN ST	- HAL		

	BYPASS O.A. LATENT LOAD							
0	CFM C	6.DIFI	BYPASS	FACTOI	BTU			
484	79.9	84	0.12	0.68	547.62			

			and the second second	and the second se			
SUN GAIN							
	AREA (DR T.DI	FACTOR	BTU/HR			
SOLAR GAIN	-GLASS						
NORTH	N N	23	0.56	0			
SOUTH	177	12	0.56	1188			
WEST	3	12	0.56	0			
EAST	177	163	0.56	16132			
N-E	Ph.	12	0.56	0			
N-W	- 1	138	0.56	0			
S-E		12	0.56	0			
S-W		85	0.56	0			

INTERNAL LAT	ENT LO/	AD	
PEOPLE	3	190	570.00
554		2 2	-
SUB TOTAL	5 10	1 6	1117.62
The second second		17 Jac.	
	S. 1.1	11	
SAFETY FACTC)R=5%		55.88
SAFETY FACTO			55.88

NAVI MUMBAL - INDIA

IR@AIKTC-KRRC

DESIGN OF VRV SYSTEM

SOLAR & TRANS	MISSION	GAIN				OUTSIDE AIR HEAT
NORTH		15	0.35		0	CFM G.DIFI 1-B.F. FACTOR
SOUTH		27	0.35		0	SENS 79.9 26 0.88 1.08 1974.19
WEST	126	29	0.35		1276	LAT 79.9 84 0.88 0.68 4015.87
EAST		23	0.35		0	
N-E		21	0.35		0	SUBTOTAL 5990.06
N-W		17	0.35		0	TOTAL 32444.05
S-E		29	0.35		0	A
S-W		25	0.35		0	HEAT GAIN SAFETY FACTOR @ 3% 973.32
ROOF		43	0.46	1	0	
ROOFINSU		43	0.11	1	0	GRAND TOTAL HEAT (TONS) 2.785 33417.37
			18	N.K.	11L	in the term
OTHER TRANSM	ISSION GA	AIN	563	1 1	Sec.	SENSIBLE HEAT FACTOR 0.96
AGLS	40	26	1.13	·	1175	SELECTED A.D.P. 50.00
PART	320	21	0.31	- 694	2083	DEHUMIDIFIED RISE 19.36
CEIL	2.	21	0.44	1	0	1 22
FLOOOR	20	21	0.44	1	0	DEHUMIDIFIED AIR CFM 1209.08
9	0.6		708	6.0	2010	TONS AS PER CFM 3.02
BYPASS O.A. SEN	NSIBLE LOA	٩D	123	152	20.5	1 LU 100 20
-	CFM T	.DIFF	FACTC	R		CHECK RESULTS
	10	26	0.12	1.08	34	GRAND TOTAL HEAT (BTU/HR/SQFT) 153.37
	0		- 44			ROOM SENSIBLE HEAT (BTU/HR/SQFT) 116.02
INTERNAL SENSI	BLE LOAD		10			SQFT/PERSON 72.63
PEOLE	2	275			550	TONS PER SQFT 0.01
APPL.	5	3.4			17	CFM PER SQFT 5.55

1.25 17

0

22472

2809

25280

MUM

BAI - INDIA

116.02 -T) 72.63 0.01 5.55 TONS/PERSON 0.93 DEHUMIDIFIED CFM/TON 434.18 AREA PER TON 72.08

ir.aiktclibrary.org

LIGHTS

EQUIP.LOAD

ROOM SENSIBLE HEAT

SUB TOTAL

3.4

3.4

LEAK LOSS + SAFETY FACTOR = 12.5%

56

LIVING ROOM

1248
11
2
2
457.7
5
8
40
457.7

HEAT LOAD SUMMARY	TR
GRAND TOTAL HEAT	5.22
DEHUMIDIFIED AIR CFM	1034
TON AS PER CFM	2.58
TONNAGE REQUIRED	5.22
CFM PER SQFT	0.83
AREA PER TON	2.16

OUTSIDE	98	83	<u></u>	<u>GR/LB</u> 149
NSIDE	72	1000	55	65.0
DIFF.	26	200	10	84.0

1 A A								
BYPASS O.A. LATENT LOAD								
110	CFM C	G.DIFF	BYPASS	FACTO	BTU			
546	457.7	84	0.12	0.68	3137			

SUN GAIN							
	AREA C)R T.DI	FACTOR	BTU/HR			
SOLAR GAI	N-GLASS						
NORTH	314	23	0.56	4047			
SOUTH	27	12	0.56	0			
WEST	569	12	0.56	3827			
EAST	3	163	0.56	0			
N-E	Ph.	12	0.56	0			
N-W	· · · ·	138	0.56	0			
S-E	-	12	0.56	0			
S-W		85	0.56	0			

NAVI MUMBAL - INDIA

1000	INTERNAL LATENT LOAD						
PEOPLE	8 190	1520					
1220	ILL Z						
SUB TOTAL	3 1 6	4657					
111111	Str1 7	0					
SAFETY FACTO	R=5%	233					
ROOM LATENT	HEAT	4890					
	1	7					
ROOM TOTAL	HEAT	26509					

ir.aiktclibrary.org

IR@AIKTC-KRRC

DESIGN OF VRV SYSTEM

SOLAR & TRANS	SMISSI	ON GAIN			
NORTH		15	0.35		0
SOUTH	314	27	0.35		2969
WEST		29	0.35		0
EAST	350	23	0.35		2814
N-E		21	0.35		0
N-W		17	0.35		0
S-E		29	0.35		0
S-W		25	0.35		0
ROOF		43	0.46	1	0
ROOFINSU		43	0.11	1	0

	SENS	457.7	26	0.88	1.08	11309
	LAT	457.7	84	0.88	0.68	23004
	SUBTOTAL					34313
	TOTAL					60822
Å.						
_	HEAT GAIN SAF	ETY FACTO)R @ :	3%		1825
	GRAND TOTAL	HEAT	(tons)	5.22	62647
1.10	D. The	Sec.				
	SENSIBLE HEAT	FACTOR				0.816
75	SELECTED A.D.F	o., , C	2.			50
14	DEHUMIDIFIED	O RISE	Κ,			19.36
and the second	5-1-48P4		A. C.	10		

OUTSIDE AIR HEAT

CFM G.DIFF 1-B.F. FACTOR

			100	180	1 CL
OTHER TRAN	ISMISSION	GAIN	Str	1.1	1
AGLS	40	26	1.13	·!	1175
PART	320	21	0.31	品	2083
CEIL	2	21	0.44	1	0
FLOOOR	×.	21	0.44	1	0
	and the second s		100 March 100 Ma		

S 640

TONS AS PER CFM	2.585
-----------------	-------

100				and the second second	and the second se	
BYPASS O.A. SE	NSIBLE	LOAD	12	255	25.5	
(CFM T	DIFF	FACTOR	WY6		CHECK RESUL
	10	26	0.12	1.08	34	GRAND TOTAL HEAT (BTU/HR/SC
-	0					ROOM SENSIBLE HEAT (BTU/HR/
INTERNAL SENS	BLE LO	AD	m			SQFT/PERSON
PEOPLE	8	275			2200	TONS PER SQFT
APPL.	5	3.4			17	CFM PER SQFT
LIGHTS	12	3.4		1.25	51	TONS/PERSON
EQUIP.LOAD	2	3.4			0	DEHUMIDIFIED CFM/TON
SUB TOTAL					19217	AREA PER TON
					S. 1	
LEAK LOSS + SA	FETY FA	CTOR =	12.5%		2402	
ROOM SENSIBL	LE HEAT		Na		21619	Ala
			-4	11.11		INDIT.
				1.10	UMI	BAI

1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CHECK RESULTS	
GRAND TOTAL HEAT (BTU/HR/SQFT)	50.19
ROOM SENSIBLE HEAT (BTU/HR/SQFT)	17.32
SQFT/PERSON	156
TONS PER SQFT	0.004
CFM PER SQFT	0.828
TONS/PERSON	0.653
DEHUMIDIFIED CFM/TON	198.1
AREA PER TON	239.1

ALL BATHROOMS

DESIGN DATA		
AREA	=	226.4
HT.OF THE AREA	=	11
LIGHTING (WATTS/SQFT)	=	2
NO. OF AIR CHANGE REQUI	=	2
Cfm VENTILATION	=	83.01
Cfm/PERSON	=	5
NO. OF PERSON	=	6
Cfm VENTILATION	=	30
Cfm VENTILATION IN CAL.	IE.	83.01
	100	

	HEAT LOAD SUMMARY	TR
	GRAND TOTAL HEAT	1.971
	DEHUMIDIFIED AIR CFM	976.7
	TON AS PER CFM	2.442
A	TONNAGE REQUIRED	2.442
_		
	CFM PER SQFT	4.314
6.35	AREA PER TON	2.042
	TECH	
	S SAMA	

	<u>D.B.</u>	<u>W.B.</u>	<u>%RH</u>	GR/LB	BYPASS O.A. LATENT LOAD
OUTSIDE	98	83		149	CFM G.DIFF BYPASS
NSIDE	72	8°.	55	65.0	83 84 0.12
DIFF.	26			84.0	

CFM G.DIFF BYPASS FACTOI					T LOAD	LATEN	BYPASS O.A.
02 04 042 070	зтu	CTOI	PASS	B	G.DIFF	CFM	Dila
83 84 0.12 0.68	569	0.68	0.12	k	84	83	

				the second s				
SUN GAIN								
	AREA	OR T.D	FACTOR	BTU/HR				
SOLAR GAIN	N-GLASS		- 80					
NORTH	A X	23	0.56	0				
SOUTH	169	12	0.56	1135				
WEST	3	12	0.56	0				
EAST	78.5	163	0.56	7170				
N-E	Ph.	12	0.56	0				
N-W	· · · ·	138	0.56	0				
S-E	-	12	0.56	0				
S-W		85	0.56	0				

NAVI MUMBAL - INDIA

INTERNAL LA	TENT LO	AD	6.Y
PEOPLE	6	190	1140
SUB TOTAL	1	0	1709
SAFETY FACT	OR=5%	-	85
ROOM LATE	NT HEAT		1794
ROOM TOTA		-	22216

IR@AIKTC-KRRC

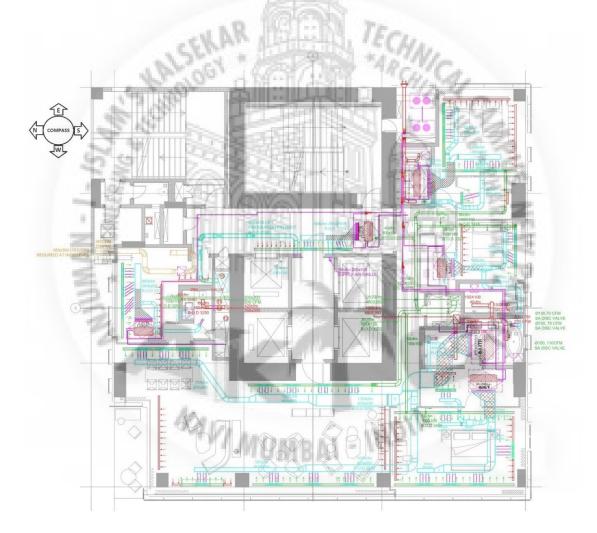
DESIGN OF VRV SYSTEM

SOLAR & TRAN	ISMISSIO	N GAII	N		
NORTH	287	15	0.35		1507
SOUTH	118	27	0.35		1115
WEST	216	29	0.35		2192
EAST	137	23	0.35		1106
N-E		21	0.35		0
N-W		17	0.35		0
S-E		29	0.35		0
S-W		25	0.35		0
ROOF		43	0.46	1	0
RO OF INSU		43	0.11	1	0

5-00		25	0.35		0	- 1
ROOF		43	0.46	1	0	
RO OF INSU		43	0.11	1	0	
			100		L PEL	
OTHER TRANS	MISSION	GAIN	50	1		
AGLS	40	26	1.13	з×.,	1175	1
PART	320	21	0.31	- 8	2083	4
CEIL	2	21	0.44	1	0	
FLOOOR	×.	21	0.44	1	0	ş,

0010				
CFM G	.DIFF 1	-B.F.	FACTOR	ł
10	26	0.88	1.08	247
10	84	0.88	0.68	503
				750
				22966
AFETY FA	CTOR (@ 3%		689
L HEAT	(tons)	1.971	23655
Sec.				
AT FACTO)R			0.919
D.P.	1.50	1		50
ED RISE	12	-		19.36
1	- 9	19		
ed air c	FM	2	2	976.7
	10 10 AFETY FA	10 26 10 84 AFETY FACTOR (L HEAT (AT FACTOR ().P.	10 26 0.88 10 84 0.88 10 84 0.88 AFETY FACTOR @ 3% 3% AL HEAT (TONS) AT FACTOR 0.9.	10 84 0.88 0.68 AFETY FACTOR @ 3% AL HEAT (TONS) 1.971 AT FACTOR D.P.

OUTSIDE AIR HEAT


					and the second se
BYPASS O.A. SE	NSIBLE L	OAD	- 47	2.5	100
	CFM 1	r.diff	FACTO	R	6.07
	10	26	0.12	1.08	34
	6				
INTERNAL SENS	IBLE LO	٩D	11		
PEOPLE	2	275			550
APPL.	5	3.4			17
LIGHTS	16	3.4		1.25	68
EQUIP.LOAD	2	3.4		-	0
SUB TOTAL					18152
	-				
LEAK LOSS + SAFETY FACTOR = 12.5%					2269
ROOM SENSIBL	E HEAT		No		20421

ЛA

11 DEG411 DE41 12 Lot Let Let 1	
CHECK RESULTS	
GRAND TOTAL HEAT (BTU/HR/SQFT)	104.5
ROOM SENSIBLE HEAT (BTU/HR/SQFT)	90.2
SQFT/PERSON	37.73
TONS PER SQFT	0.009
CFM PER SQFT	4.314
TONS/PERSON	0.329
DEHUMIDIFIED CFM/TON	495.5
AREA PER TON	92.72

AI - INDIA

	PROJECT: DISCRIPTION	SUBJECT: HEAT LOAD SUMMARY SHEET FOUR SEASONS RESIDENTIAL 22,23, 27 & 35 FLOOR								
SR.		Area Sq. Ft.	Occupancy Nos.	WATTS Sq. Ft.	Fresh air CFM	APPL. WATTS.	Dehumidified air	Tonnage REQ. (TR)	Cfm/Ton	Tonnage HP
2	GUEST BEDROOM 2	174	2	2	64	17	428	1.25	1.07	2
3	GUEST BEDROOM 3	218	3	2	80	17	1222	3.05	3.05	3
4	LIVING ROOM	1248	8	2	458	51	1115	5.37	2.79	6
5	ALL BATHROOM	226	6	2	83	68	990	2.47	2.47	3
	TOTAL	2181	24	10	800	187	4257	13.88	10.63	16

Figure 7-1. Floor Layout L-22,23,27,35.

CHAPTER 08

8. PHOTOGRAPHY:

Figure 8-2. Project site visit.

Figure 8-3. Outdoor Unit.

Figure 8-4. Concealed duct type Indoor Unit.

Figure 8-5. Ducting in Living Room.

Figure 8-6. Ducting in Bedroom & Bathroom.

IR@AIKTC-KRRC

DESIGN OF VRV SYSTEM

Figure 8-7. Inline fan in Kitchen for Exhaust (1400CFM).

Figure 8-8. Inline fan for fresh air (4000 CFM).

Figure 8-9. Smoke Fire Damper & Arma Sound.

Figure 8-10. Planum.

Figure 8-12. Appling insulation & Aluminum tape.

Figure 8-14. Raffinates (Y-joint).

Figure 8-16. Inventory Store Room.

Figure 8-17. Turbo fan (36000 CFM) for Exhaust.

Figure 8-18. Damper & Turbo fan (36000 CFM) for Fresh air.

Figure 8-19. PLC Control Room.

Figure 8-20. Completion of installation of VRV System in Living Room & Bedroom.

Figure 8-21. Completion of installation of VRV System in Bathroom & Kitchen.

CHAPTER 09

9. FUTURE SCOPE & CONCLUSION

9.1. Future Scope:

A new refrigerant detection and management system works with VRF (Variable Refrigerant Flow) air conditioning systems. In the unlikely event of a refrigerant leak, it shuts down the specific section of pipework involved, while enabling the rest of the system to continue operating as normal.

The VRF systems that are out today will undoubtedly be improved as the popularity of this system continues to increase and competition exists between manufacturers to produce the best product. In the meantime, it is best to study the operating principles of what's already out there so that the performance of these installed systems can be optimized through proper design, installation and commissioning.

The overall efficiency, design flexibility, and total life cycle cost of variable refrigerant flow (VRF) systems are driving growth of the technology in the HVAC market. Such growth is evidenced by a recent report from Markets and Markets, which reports the global VRF market is projected to reach approximately \$9.65 billion by 2021, registering a compound annual growth rate (CAGR) of 10.8 percent between 2016 and 2021.

We should get better efficient system by calculating heat & cooling load on TOSHIBA SMMS7 software. This software is fully automated due to which we can calculating heat load of complicate space easily. We will also be using Carrier HAP software for the calculating the heat & cooling load which is fully automated.

9.2. Conclusion:

The VRF system has been designed successfully considering the required indoor condition. proper pipe dimensions and material has been selected. indoor and outdoor units as per requirement are selected.

<u>REFERENCE</u>

Roth, Kurt, et al. "energy consumption characteristics of commercial building HVAC system volume III: energy saving potential" TIAX LLC FOR DOE,2002 www.eere.gov/building/info/documents/pdfs/hvacvolume2finalreport.pdf

 [2] Hai, Xiao Hong; Tao, Zhang; Yun, Fanhua; and Jun, Shen, "Design and Research of the Commercial Digital VRV Multi-Connected Units with Sub-Cooled Ice Storage System" (2006).
 International Refrigeration and Air Conditioning Conference. Paper 759. http://docs.lib.purdue.edu/iracc/759

[3] William Goetzler, Member ASHRAE, ASHRAE Journal, April 2007

[4] Johnson Spellman" ASHRAE headquarters building renovation, mechanicals narrative" June26,2007.

http;//images.ashrae.biz/renovation/documents/o6js22_mech_design_narrative_permit%20set_2. pdf.

[5] Ammi Amarnath, "Variable Refrigerant Flow: An Emerging Air Conditioner and Heat Pump Technology" Electric Power Research Institute. Morton Blatt, Energy Utilization Consultant 2008, ACEEE Summer Study on Energy Efficiency in Buildings.

[6] John rogers, "RESIDENTIAL CONSUMPTION OF ELECTRICITY IN INDIA" Background Paper

India: Strategies for Low Carbon Growth, July 2008 The World Bank.

[7] Qiu Tua, b, Ziping Fenga, b, Shoubo Maoc, Kaijun Donga, b, Rui Xiaoa, b, Wenji Songa "Heating control strategy for variable refrigerant flow air conditioning system with multi-module outdoor units" Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou 510640,

Design of HVAC with VRF System for a Space House in Ahmedabad (IJSTE/ Volume 1 / Issue 10 / 006) All rights reserved by www.ijste.org 35

[8] Li, Y.M., Wu, J.Y., and Shiochi, S., "Experimental validation of the simulation module of the water-cooled variable refrigerant flow system under cooling operation", Applied Energy, vol. 87, pp. 1513-1521, 2010.

[9] Tolga N. Aynur "Variable refrigerant flow systems: A review", Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, 3157 Glenn Martin Hall Building, College Park, MD 20742, USA.

[10] Brian Thornton, Senior Researcher, Pacific Northwest National Laboratory, Green Proving Ground Program www.gsa.gov/gpg or "Variable Refrigerant Flow Systems" which is available from the GPG program website, www.gsa.gov/gpg. December 2012.

[12] Goetzler, W. (2007). Variable refrigerant flow systems. ASHRAE Journal.

[13] VARIABLE REFRIGERANT FLOW SYSTEMS Technology Overview ASHRAE NB/PEI, SEPTEMBER 2011 Roger Nasrallah, ing. Enertrak inc.

[14] HVAC Variable Refrigerant Flow Systems BY A BHATIA. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

[15] Bonneville Power Administration Prepared by: 570 Kirkland Way, Suite 200 Kirkland, Washington 98033

NAVI MUMBAL - INDIA

[16] Refrigeration and Air-Conditioning BY P.S. DESAI

[17] Refrigeration and Air-Conditioning BY R.S. KHURMI

[18] ISHRAE HAND BOOK

[19] DAIKIN Catalogue

[20] DAIKIN Installation Manual

[21] DAIKIN Owner Manual

WEBSITES:

- 1) www.researchgate.com
- 2) www.airstair.com
- 3) www.carrier.com
- 4) www.daikinac.in
- 5) http://www.ashrae.in
- 6) http://www.sciencedirect.com
- 7) http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.tips
- 8) http://www.energystar.gov
- 9) http://www1.eere.energy.gov/buildings/appliance_standards/residential/central_ac_hp.ht ml

AI - INDIA

10) https://www.daikin-india.com > air-conditioning

NAVI MUMB