2013-14

AIKTC, School of Engineering & Technology

Set-03

UNIT TEST 1

SE- All Branches

Sem IV (CBSGS)

Applied Maths IV

FEB 2014

Q.1 a) Prove that Eigen values of a Hermitian matrix are real numbers. (12)

b) A =
$$\begin{bmatrix} -1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2 \end{bmatrix}$$
 Find the Eigen values and Eigen vectors for A³ + 5A + 8I.

c)
$$A = \begin{pmatrix} \pi & \pi/4 \\ 0 & \pi/2 \end{pmatrix}$$
 Find $\cos A$

Q.2) Given A =
$$\begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$
 (8)

- a) Find Eigen values and eigen vectors of A.
- b) Is A Diagonable? Explain.
- c) Is A derogatory? Explain.

OR

Q.2) Given A =
$$\begin{bmatrix} 1 & -2 & 0 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
 (8)

- a) Find Eigen values and Eigen vectors of A.
- b) Is A Diagonable? Explain.
- c) Is A Derogatory? Explain.

School of Engineering & Technology				
Subject: WTP Marks: 20 Durat			21 – 02 - 2014 on: 1 Hr/s	
Cla	ss: SE	Len IV UT-I Branch: EXT	ГC	
		ALL QUESTIONS ARE COMPULSARY		
Q1.		Solve any five of the following	[5x02]	
	(a) (b)	field.		
	(c) (d)	The general boundary conditions for dielectric-dielectric interface are $E_{1t} = $, $D_{1t} = $, $E_{1n} = $ and $D_{1n} = $ State uniqueness theorem.		
	(e) (f)	State the equation for uniform plane waves in non conducting media in the terms of electric field intensity and magnetic field intensity. The electric flux density is given as 10 C/m ² . Find the electric field intensity if		
	(1)	the relative permittivity is 4.4.		
Q2.		Attempt any one of the following	[05]	
	(a)	Point charge Q1, 300 μ C located at (1,-1,-3) m experiences a force, $\vec{F} = (8\vec{a_x} - 8\vec{a_y} + 4\vec{a_z})N$ due to point charge Q2 at (3,-3,-2) m. Determine the charge Q2.		
	(b)	Show that $\nabla^2 V = -\frac{\rho_v}{\epsilon}$		
Q3.		Attempt any one of the following	[05]	
	(a)	If $\rho=3xy$ C/m ² . Find out the total charge present on top surface of a cube of side 2 m and centred at origin with edges parallel to the axis.		
	(b)	Write short note on electromagnetic pump.		

School of Engineering & Technology				
Subject: MP	Date: Feb. 14			
Marks: 20	Duration: 1 Hr/s			
Class: Second Year Sem IN UTI	Branch: EXTC			

Instructions:

Q.1 Attempt any four (3) out of six (6).

12 M

- 1. Draw format of flag register of 8085 microprocessor and explain.
- 2. Explain following pin signal of 8085 microprocessor:
 - a) HOLD
- b) HLDA
- c) RD
- d) ALE
- 3. Explain De-Multiplexing process of Address and Data Bus in 8085 microprocessor based system.
- 4. Explain register organization of 8085 microprocessor.
- 5. Explain pipelining concept in 8086 microprocessor.
- 6. Give the advantages of Memory segmentation.

Q.2 Attempt any one of the following.

8 M

- 1. Draw the architecture of 8086 microprocessor and explain function of Bus interface unit.
- 2. Explain Memory segmentation and how 20 bit physical address is generated in 8086 microprocessor.
- 3. Explain the maximum mode pin signals of 8086 microprocessor.

School of Engineering & Technology Subject: Signal & System Class: S.E Branch: Electronics & Telecommunication Aem IV UT - I Instructions: Attempt any 4 20 marks

- 1)a)Determine Given Signal is periodic or non periodic i)x(t)=2cost +3cos t/3 ii)x(n)= $e^{j(\Pi/4)n}$
- 2) $x(n) = (0.5)^n u(n)$ state whether it is energy or power signal justify
- 3)Find and sketch the even and odd componets of the following: 5

4)Check whether the signal Linearity, Time variance, causal or non causal

i)y(t)=x(t).cos 100
$$\Pi$$
t
ii) y(n)=x(n) +n x(n+1)

5)plot the signal with respect to time x(t)=u(t)-r(t-1)+2r(t-2)

School of Engineering & Technology

Subject: Control System (ETC405)

Marks: 20

Class:IV UT.

Date: Feb 2014

Duration: 1 Hr Branch: EXTC

Instructions:

Q1. Attempt any two of the following. (6x2=12 Marks)

- 1. What is need of a control system? Compare closed loop control system over open loop control system.
- 2. Describe the terms:
 - i) Characteristics equation
- ii) Poles
- iii) Zeroes
- 3. Find the transfer function and response of a RC network. And comment on the stability of the RC network.

Q2. Attempt any one of the following. (8x1=08 Marks)

1. Find transfer function of following block diagram.

2. Find the transfer function of the following system by using signal flow graph.

