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s u m m a r y

In this study, artificial intelligent (AI) techniques such as artificial neural network (ANN), Adaptive neuro-
fuzzy inference system (ANFIS) and Linear genetic programming (LGP) are used to predict daily and
hourly multi-time-step ahead intermittent reservoir inflow. To illustrate the applicability of AI tech-
niques, intermittent Koyna river watershed in Maharashtra, India is chosen as a case study. Based on
the observed daily and hourly rainfall and reservoir inflow various types of time-series, cause-effect
and combined models are developed with lumped and distributed input data. Further, the model perfor-
mance was evaluated using various performance criteria. From the results, it is found that the perfor-
mances of LGP models are found to be superior to ANN and ANFIS models especially in predicting the
peak inflows for both daily and hourly time-step. A detailed comparison of the overall performance indi-
cated that the combined input model (combination of rainfall and inflow) performed better in both
lumped and distributed input data modelling. It was observed that the lumped input data models per-
formed slightly better because; apart from reducing the noise in the data, the better techniques and their
training approach, appropriate selection of network architecture, required inputs, and also training–test-
ing ratios of the data set. The slight poor performance of distributed data is due to large variations and
lesser number of observed values.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Reservoir inflow forecast is a key component in planning, devel-
opment, design, operation and maintenance of the available water
resources. Inflow forecast models are useful in many water re-
sources applications such as flood control, drought management,
optimal reservoir operation, hydropower generation (Yeh, 1985).
Thus, the identification of suitable generation model for future in-
flow is necessary for successful planning and management of water
resources structures (Keskin et al., 2006). According to the use of
the observational data and to the description of the physical pro-
cesses large number of empirical, conceptual, physically based
and data driven models has been developed and applied to map
the rainfall–runoff (RR) relationship (Singh, 1988; Jothiprakash
and Magar, 2009; Jothiprakash et al., 2009). However, each model
has its own advantages and disadvantages (Sorooshian et al., 1993;
Smith and Eli, 1995). These models suffer from problems such as
identification, assimilability and uniqueness of parameter estima-
tion (Jain and Indurthy, 2003). Some of the earliest examples of
time-series models are given by Box and Jenkins (1976), and in-
cludes autoregressive (AR), autoregressive moving average
(ARMA), autoregressive integrated moving average (ARIMA) and

autoregressive moving average with exogenous input (ARMAX)
methods. All these approaches have employed conventional
time-series forecasting and modelling (Thomas and Fiering,
1962; Yevjevich, 1963; Salas et al., 1980; Toth et al., 2000; Moham-
madi et al., 2006) assuming that the data taken over time may have
an internal structure (such as autocorrelation, trend, or seasonal
variation). However, they provide only reasonable accuracy and
suffer from the assumptions of stationary and linearity.

Recently artificial intelligent (AI) based data driven techniques
such as artificial neural network (ANN), adaptive neuro-fuzzy
inference system (ANFIS) and comparatively new technique linear
genetic programming (LGP) have emerged as important tools to
overcome the drawbacks of conventional modelling technique.
These data driven approaches are based on extracting and re-using
information implicitly contained in hydrological time-series with-
out directly taking into account the physical laws that underline
the process (de Vos and Rientjes, 2005). In the last decade, ANN
has been successfully employed in modelling a wide range of
hydrologic processes due to their ability to model non-linear sys-
tem efficiently (Tokar and Johnson, 1999; Thirumalaiah and Deo,
2000; Chang et al., 2002; Sivakumar et al., 2002; Zhang et al.,
2009; Googhari et al., 2010). Wang et al. (2006) studied the classic
‘divide and conquer (DAC)’ paradigm as a top-down black-box
technique for the forecasting of the daily streamflows of the upper
Yellow River at Tangnaihai in China. The input considered was only

0022-1694/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jhydrol.2012.04.045

⇑ Corresponding author. Tel.: +91 022 25767302.
E-mail address: vprakash@iitb.ac.in (V. Jothiprakash).

Journal of Hydrology 450–451 (2012) 293–307

Contents lists available at SciVerse ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/ locate / jhydrol



Author's personal copy

streamflow records without employing exogenous variables of the
runoff generating process such as rainfall. Three forms of hybrid
ANNs were used as univariate time series models, namely, the
threshold-based ANN (TANN), the cluster-based ANN (CANN),
and the periodic ANN (PANN). For the purpose of comparison of
forecasting efficiency, the normal multi-layer perceptron form of
ANN (MLP–ANN) is selected as the baseline ANN model. Overall,
among the three variations of hybrid ANNs tested, the PANN model
performed best for short lead times but vanishes for longer lead
times.

Kote and Jothiprakash (2009a) investigated the performance of
time lagged recurrent networks (TLRN) with time delay, gamma
and laguarre memory structure for predicting seasonal (June–
October) reservoir inflow with a monthly time step. The ANN mod-
el results were compared with conventional ARIMA models for ob-
served time-series of Pawana reservoir, upper Bhima river basin,
India. Kote and Jothiprakash (2009b) studied the performance
TLRN with AR, ARMA and ARIMA for intermittent reservoir in ser-
ies. The models have been developed and applied for monthly time
step for Yadgaon reservoir in Upper Bhima River basin India.
Jothiprakash et al. (2010) applied ANN models for an intermittent
RR process using monthly time stepped lumped and distributed
data. The developed ANN models were trained with various algo-
rithms. It was found that both lumped and distributed data ANN
models performed equally better. However, from the cause-effect
ANN models, it was found that the back propagation (BP) algorithm
performed well for lumped data and conjugate gradient (CG) algo-
rithm performed well for distributed data.

Although ANNs do have many attractive features, they suffer
from some limitations like the difficulty in choosing an appropriate
training algorithm and time-consuming effort involved in develop-
ing the structure. But there is still scope to determine the structure
of the ANN network and the training algorithm to optimize specific
parameters of the network. A comprehensive review of the appli-
cation of ANN to hydrology can be found in ASCE Task Committee
(2000a, 2000b) and (Maier and Dandy, 2000; Maier et al., 2010). To
achieve robust learning from the given set of patterns, various
kinds of neural networks mechanism are explored in the past. A
time-delay recurrent neural network (TDRNN) and Generalized
feed forward (GFF) network are adopted in the present study.
Wu and Chau (2011) has predicted daily RR transformation from
two different watersheds, namely, Wuxi and Chongyang in China.
This study attempts to eliminate the lag effect from two aspects:
modular ANN (MANN) and data pre-processing by singular spec-
trum analysis (SSA). Results showed that MANN does not exhibit
significant advantages over ANN. However, it is demonstrated that
SSA can considerably improve the performance of prediction mod-
el and eliminate the lag effect. It was recommended that the ANN
RR model coupled with SSA is more promising.

Fuzzy theory appears to be extremely effective in handling dy-
namic, non-linear and noisy data, especially when the underlying
physical relationships are not fully understood. It has also proved
to be a very attractive tool enabling the modeller to investigate
problems that are uncertain, empiricism and in case of vague data
(Mohan and Jothiprakash, 2000; Nayak et al., 2005; Firat and Gun-
gor, 2008). In time-series modelling, the so-called ANFIS over-
comes some of the individual weaknesses of ANN and fuzzy and
offers some appealing features (Nayak et al., 2004; Chen et al.,
2006; Firat, 2008). Jothiprakash et al. (2009) used ANFIS models
to develop lumped data RR relationship for monthly data. Intermit-
tent runoff river system namely, Kanand river in Maharashtra
state, India was taken as the case study.

A neuro-fuzzy network combines the transparency of fuzzy ‘‘if-
then’’ rules with learning capability of neural network. This flexible
network is widely recognized because of its accurate non-linear
modelling, able to learn from environment (input–output), self

organization of its structure and in an adaptive interactive manner
(Chen et al., 2006). ANFIS has been proved to be a powerful tool for
modelling numerous processes, such as RR modelling, real-time
reservoir operation, flood forecasting (Chau et al., 2005; Chidthong
et al. 2009; Dastorani et al., 2010; Dorum et al., 2010). However,
application of ANFIS for modelling the daily and hourly RR rela-
tionship (for an intermittent system, the data having long se-
quence of zero) has not been reported much.

In recent years, a particular subset of genetic programming (GP)
with a linear structure similar to the Deoxyribose Nucleic Acid
(DNA) molecule in biological genomes namely, LGP has been
emerged. LGP is a machine learning approach that evolves the pro-
grams of an imperative language or machine language instead of
the traditional Koza (1992) tree-based GP expressions of a func-
tional programming language (Brameier and Banzhaf, 2007). LGP,
the extension of GP provides inherent functional input–output
relationships as compared to traditional black box models and
found to be more suitable in developing a physical relationship be-
tween a set of input and output data in the form of a computer pro-
gram. For the last one decade, GP have been pronounced as one of
the alternatives and robust methods in the field of hydrology and
water resources engineering (Whigham and Crapper 2001; Drun-
pob et al., 2005; Makkeasorn et al., 2008; Elshorbagy et al.,
2010a, 2010b). However, LGP is still under its nascent stage. Very
few studies have been carried out using LGP in hydrology and
water resources (Guven, 2009; Garg and Jothiprakash, 2010).
Jothiprakash and Kote (2010) studied the effect of data pre-pro-
cessing while developing AI based data-driven techniques, such
as ANN, model trees (MT) and LGP for Pawana Reservoir in Maha-
rashtra, India. The results showed that AI methods are powerful
tools for modelling the daily time-series with appropriate data
pre-processing, in spite of many zero values.

Many reservoirs in India are intermittent in nature and inflow
into these reservoirs is estimated by a mass balance equation. In
all these, reservoir inflow data is computed by subtracting reser-
voir level of the current day with the previous day reservoir level
duly accounting for releases (spill, irrigation, power outlets, etc.),
leakages, and evaporation losses from the functional reservoir. If
there is an error due to various assumptions of estimation proce-
dure, that error is constant for each computed data in the inflow
time-series leading to global shift in the observed values. Generally
time-series accounts for the fact that data taken over time may
have an internal structure such as autocorrelation, trend and sea-
sonal variation, that should be accounted and analysed before
modelling the data series (Peng and Buras, 2000; Kote and Jothip-
rakash, 2009a).

It is to be mentioned that the data used in most of the above re-
ported studies are from a perennial river and most of time, the data
used is time-series stream flow data. Very few studies have been
carried to assess the effect of using both continuous lumped and
distributed data on daily and hourly basis for the same basin.
The main purpose of this study is to investigate the applicability
and capability of the above AI techniques to predict the multi-
time-step ahead daily and hourly intermittent Koyna reservoir
inflow.

2. Time-delay recurrent neural networks (TDRNNs)

Most of the ANN applications in hydrology have used a feed for-
ward neural network, namely, the standard multi-layer perceptron
(MLP) trained with the back-propagation (BP) algorithm (Coulibaly
et al., 2000). However, MLP is a static and memory less network,
and even though it is the most widely used to model water re-
source variables predictions, it often yields sub-optimal solutions.
MLP model does not perform temporal processing and the input
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vector space does not consider the temporal relationship of the in-
puts (Giles et al., 1997). For more complicated temporal processing
and understanding the dependence of the initial and past states,
tapped delay lines (TDLs; internal time-delay operators) can be
used within the MLP network. Actually, the use of these internal
time-delay operators help the network to behave dynamically
and leads to the time-delay neural network (TDNN), which has
been used in a variety of applications (Waibel et al., 1989). TDLs
and an Elman recurrent connection unit (Elman, 1990) are at-
tached to a static MLP network add to an extended dynamic neural
network known as a time-delay RNN (TDRNN). The functioning of
TDRNN can be found in (Karamouz et al., 2008; Razavi and Aragh-
inejad, 2009; Kote and Jothiprakash, 2009b; Htike and Khalifa,
2010).

3. Generalized feed forward (GFF) ANN

In many engineering problems, one-time-step-ahead prediction
using ANN has been performed and reported with satisfactory re-
sults. However, one-time-step-ahead prediction may not provide
enough information, especially in situation where it is desirable
to understand the behaviour of multi-time-steps in the future. It
is found that most of the ANN models on time-series forecasting
used the standard MLP trained with BP algorithm. Even though
the well-known steepest descent method is a widely used training
algorithm, it often yields sub-optimal solutions and its conver-
gence characteristic has encouraged research into faster algo-
rithms. Generalized feed forward (GFF) neural network is
extended to form Shunting Inhibitory ANNs (SIANNs). SIANNs are
biologically inspired networks in which the synaptic interactions
are mediated via a non-linear mechanism called shunting inhibi-
tion, which allows neurons to operate as adaptive non-linear fil-
ters. The functioning of GFF can be found in (Bouzerdoum and
Mueller, 2003; Chang et al., 2004; Hung et al., 2009).

4. Adaptive neuro-fuzzy inference system (ANFIS)

Jang (1993) introduced architecture and learning procedure for
the FIS that uses a neural network learning algorithm for con-
structing a set of fuzzy if-then rules with appropriate membership
functions (MFs) from the specified input–output pairs. This proce-
dure of developing a FIS using the framework of adaptive neural
networks is called ANFIS. There are two methods that ANFIS learn-
ing employs for updating membership function parameters: (1)
backpropagation for all parameters (a steepest descent method)
and (2) a hybrid method consisting of backpropagation for the
parameters associated with the input membership and least
squares estimation for the parameters associated with the output
membership functions. As a result, the training error decreases,
at least locally, throughout the learning process. Therefore, the ini-
tial membership functions resemble the optimal ones, the easier it
will be for the model parameter training to converge. Human
expertise about the target system to be modelled may aid in set-
ting up these initial membership function parameters in the FIS
structure. A review of the application of ANFIS to hydrology can
be found in (Aqil et al., 2007; Wang et al., 2009; Jothiprakash
et al., 2009).

5. Linear genetic programming

In spite of various advantages of applying ANN and ANFIS tech-
nique, transferring the knowledge gained through modelling, par-
ticularly the relationship between input and output to the field
engineers is rather limited. Hence, researchers are seeking other
data based techniques where the knowledge can be extracted very

easily. The Darwin’s natural selection theory of evolution based GP,
is relatively a new technique and is the member of evolutionary
algorithm family (Koza, 1992). GP is an inductive form of machine
learning as it evolves a computer program to perform an underly-
ing process defined by a set of training samples (Whigham and
Crapper, 2001). GP has been successfully applied to complex
non-linear problems and its solution describes the input–output
relationship.

In the concept of GP introduced by Koza (1992), the programs
are represented as tree structures and expressed in the LISP func-
tional programming language (Babovic and Keijzer, 2000; Brame-
ier, 2004; Guven, 2009). Later, researchers regarded it as tree
based GP (TGP) due to its tree structural solution. Recently, a sub-
set of GP has emerged, which evolves programs in an imperative
programming language (C/C++) and represent the graph-based
functional structure, termed as LGP (Brameier et al., 1998). The
imperative program structure of LGP identifies the non-effective
instructions efficiently and executes rapidly (Brameier and Ban-
zhaf, 2001; Foster, 2001). Moreover, in LGP, the maximum size of
the program was usually restricted to avoid over-growing pro-
grams without any condition (Brameier and Banzhaf, 2001).

The name ‘linear’ refers to the structure of the (imperative) pro-
gram representation, and does not stand for functional genetic pro-
grams. LGP represents highly non-linear solutions in this meaning
(Brameier, 2004; Guven, 2009). The main advantage of LGP is its
ability to produce models that build an understandable structure
given that the LGP model exhibits a great potential to screen and
prioritize the input variables. The various LGP parameters involved
are population size, mutation rate and its different types (block
mutation rate, instruction mutation rate and data mutation rate),
crossover rate, homologous crossover, function set, number of
demes and program size. The parameter selection will affect the
model generalization capability of LGP. They were selected based
on some previously suggested values (Francone, 2004) and after
trial and error approach.

Ineffective code in genetic programs, referred as ‘‘intron’’ repre-
sents instructions without any influence on the program behav-
iour. Structural ‘‘introns’’ act as a protection that reduces the
effect of variation on the effective code and allow variations to re-
main neutral in terms of fitness change. Because of the imperative
program structure in LGP, these ineffective instructions can be
identified efficiently. This allows the corresponding effective
instructions to be extracted from a program during runtime. Since
only effective programs are executed when testing fitness cases,
evaluation is significantly accelerated. The instructions from
imperative languages are restricted to operations that accept a
minimum number of constants or memory variables, called regis-
ters (r) and assign the result to a destination register, e.g.
r0 = r1 + 1. Where register r0 holds the final program output. LGPs
can be converted into a functional representation by successive
replacements of variables starting with the last effective instruc-
tion (Oltean and Grosan, 2003).

For LGP based models, Discipulus software (Francone, 2004), is
used which is based on Automatic Induction of Machine code by
Genetic Programming (AIMGP) approach. In order to evaluate the
capabilities of proposed LGP models, various performance criterias
are used between actual and predicted values. The fitness of LGP
program is evaluated using mean square error (MSE).

6. Study area and data

The area selected for the present study is Koyna watershed,
situated on the West-Coast of Maharashtra, India, lies between
the latitude of ‘‘170000N’’ to ‘‘170590N’’ and longitude of
‘‘730020E’’ to ‘‘730350E’’. The location of the study area along with
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nine rain-gauge stations in Koyna watershed is shown in Fig. 1.
The Koyna Dam is one among the 23,000 large dams in the world
with a gross storage capacity of 2797.15 � 106 m3. The height of
the Koyna dam above foundation level is 103 m and the length of
the dam at the crest is about 800 m. The Koyna project is a mul-
ti-purpose project, but primarily designed as a hydro-electric
project that supplies hydro-electric power to Maharashtra state,
India with an installed capacity of 1920 MW. Koyna watershed
has an elongated leaf shape, about 64 km in length and about
13 km width with an area of 891.78 km2. The watershed is
bounded by hills and broadly consists of 41% forest, 49% culti-
vated area, 6% waste land and 4% of others (CDO, 1992). The
water spread area at full reservoir level is 115.36 km2 which is
about 13% of the total catchment area. Nearly 99% of the annual
rainfall in this basin occurs during south-west monsoon (June–
October) and varies from 2972 mm to 6694 mm annually over
the valley.

Daily rainfall of 47 years (January 1961–December 2007),
hourly rainfall of four years (2005–2008) and corresponding inflow
data has been collected from Koyna irrigation division office, Gov-
ernment of Maharashtra, India and is used in this study. Table 1
shows the details of raingauge stations and the length of the data
available.

7. Model development

Historically observed inflow values represent the hydrological
state of the catchment, which greatly determines a catchments re-
sponse to a rainfall event. In the basin there are nine rain-gauge
stations measuring the rainfall data. Hence, both rainfall (P) and in-
flow (Q) are considered as critical input to the model development.
According to different input combinations to the models, various
types of models developed in the present study are time-series

models (forecast multi-time-step ahead future inflow values based
on observed current and past inflow values), cause-effect models
(the reservoir inflow is affected by precipitation alone over the
catchment area) and combined models (output is affected by cur-
rent and delayed rainfall as well as inflows) (Tokar and Johnson,
1999; Tokar and Markus, 2000; Jothiprakash et al., 2010).

7.1. Daily and hourly lumped input data models

Even though each of the nine rain-gauge station has a time-ser-
ies of rainfall data, all the rainfall data (in mm) are lumped using
Thiessen polygon method with respect to space and a single
time-series rainfall data has been used to predict the inflow and
the model is considered as lumped data models. The average daily
rainfall data length is 47 years. The different lengths are taken care
while averaging them spatially. The data was divided into two sets:
a training set consisting of first 70% and testing set consist of the
remaining 30%. In the present study, an attempt is made to develop
daily and hourly time stepped relationship between the inflow at
the catchment outlet (at reservoir), using average rainfall and in-
flow data available up to the current time ‘t’. Therefore, all the
developed models are basically approximators of the general
function

Q ðtþnÞ ¼ ffPobsðtÞ; Pobsðt�1Þ . . . Pobsðt�mÞ;Q obsðtÞ;Qobsðt�1Þ . . . Q obsðt�nÞg
ð1Þ

Pobs(t) and Qobs(t) represent observed rainfall and inflow during time
period ‘t’. Q(t+n) is inflow to be predicted for the next time step. The
prediction is done up to three days ahead for daily data and up to
ten hours for hourly data. Shanker et al. (1996), Luk et al. (2000)
and Aqil et al. (2007) reported that networks trained on trans-
formed data achieve better performance and faster convergence in
general. The present study data is found to be non-normal hence,

Fig. 1. Location of Koyna Watershed (Magar, 2011).
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a logarithmic transformation has been used to bring the observed
data to near normal distribution.

The descriptive statistics of total observed, transformed data set
as well as training and testing data set for daily data can be found
in literature (Magar and Jothiprakash, 2011) whereas for hourly
data set are shown in Table 2. From Table 2 it can be observed that
the standard deviation, skewness, kurtosis are very high in ob-
served data and found to be greatly reduced after logarithmic
transformation. From Table 2 it can also be observed that the train-
ing, testing, and entire data set (both rainfall and inflow) are statis-
tically similar revealing that the data are from same population
and will not cause over fitting difficulties. This conclusion is sup-
ported by many authors (Aytek and Alp, 2008). Based on cross-cor-
relation, autocorrelation, partial auto correlation function twenty
daily lumped data models and twelve hourly lumped data models
with various input combinations have been formulated to develop
the real-time rainfall-reservoir inflow relationship. As an example,
sample of daily and hourly lumped input data models (two in each
type) are shown in Table 3.

7.2. Daily and hourly distributed input data models

Daily and hourly-distributed input data models have been
developed for establishing relationship between rainfall and inflow
for Koyna watershed. Unlike lumped data model, in distributed
data model, the input variables, rainfall from different stations
are considered as individual inputs (used ‘‘as it is’’) for the model
development. The rainfall from nine rain-gauge stations are valued
as P1(t), P2(t), P3(t), P4(t), P5(t), P6(t), P7(t), P8(t), P9(t) and inflow as Q(t).
Twenty daily data models and twelve hourly data models with

various combinations of input have been formulated to develop
the distributed rainfall inflow relationship. As an example sample
of daily and hourly distributed data input models, (two in cause-ef-
fect and two in combined) are shown in Table 4. The general form
of the distributed input data model is

Qtþn ¼ ffðP1ðtÞ ; P2ðtÞ; . . . ; P9ðtÞÞ; ðP1ðt�1Þ; P2ðt�1Þ . . . P9ðt�1ÞÞ; . . . ;

ðP1ðt�mÞ ; P2ðt�mÞ; . . . P9ðt�mÞ . . . Q obsðtÞ; . . . ;Q obsðt�1Þ; . . . ;Q obsðt�nÞÞg
ð2Þ

8. Model performance criteria

The performance of the lumped and distributed input data
models are assessed based on statistical performance criteria like
correlation coefficient (R), nash sutcliffe efficiency (E), root mean
square (RMSE), akaike information criteria (AIC), bayesian informa-
tion criteria (BIC) (Srinivasulu and Jain, 2006; Nash and Sutcliffe,
1970). The details of performance criteria are listed in Appendix A.

9. Results and discussion

9.1. Daily lumped and distributed data ANN models (ANN)

Multi-input multi-output (MIMO) ANN architecture was se-
lected, for capturing the complex, dynamic, and non-linear, rain-
fall–inflow process in the basin. The number of neurons in the
input and the output layer can be specified according to the num-
ber of predictors and predictants, respectively. The output vector in
the output layer is three neurons representing the inflow at 1 day,

Table 1
Details of rain-gauge stations and the length of the daily data available (Magar, 2011).

Sr. no. Rain-gauge station Longitude (E) Latitude (N) Length of the data available

1 Mahabaleshwar 7304002100 1705502300 47 Years
2 Valvan 7303504300 1704401700 37 Years
3 Pratapgad 7303404300 1705600200 41 Years
4 Navaja 7304302400 1702503700 36 Years
5 Sonat 7304203000 1705001400 41 Years
6 Kati 7304903600 1702901800 41 Years
7 Kargaon 7307604700 1703901700 15 Years
8 Bamnoli 7304504300 1704304600 41 Years
9 Koyna 7304402800 1702303300 47 Years

10 Inflow � 106 m3 7304500800 1702502400 47 Years

Table 2
Statistical properties of raw and logarithmic transformed hourly data set.

Statistical
properties

Average hourly rainfall (mm) Inflow (m3/s)

Entire data set
(observed) (01/
06/05–0 h)–
(31/10/2008–
23 h)

Entire data set
(transformed)
(01/06/2005–
0 h)–31/10/
2008–23 h)

Training data
set
(transformed)
(01/06/05–0 h)–
(01/10/07–8 h)

Testing data set
(transformed)
(01/10/07–9 h–
31/10/2008–
23 h)

Entire data set
(observed) (01/
06/05–0 h)–
(31/10/2008–
23 h)

Entire data set
(transformed)
(01/06/2005–
0 h)–31/10/
2008–23 h

Training data
set
(transformed)
(01/06/05–0 h)–
(01/10/07–8 h)

Testing data set
(transformed)
(01/10/07–9 h–
31/10/2008–
23 h)

X 2.621 0.133 0.152 0.100 359.18 0.905 0.882 0.961
Sx 2.982 0.161 0.168 0.0865 593.16 0.526 0.580 0.364
Csx 3.712 1.101 0.910 �0.177 2.74 �0.539 �0.463 �0.384
Kx 4.193 0.320 �0.163 �1.175 3.10 �0.843 �1.184 �0.145
Xmin 0.00 0 0 0 0.00 0 0 0
Xmax 39.334 0.8 0.802 0.22 4976 1.85 1.848 1.785
Cv 1.845 1.211 0.802 0.86 1.65 0.581 0.657 0.073
No. of data

points
14688 14688 10,281 4407 14,688 14,688 10,281 4407

No. of
zeros

9379 9379 6271 3108 9546 9546 6785 2761

% Of zero 63.85 63.85 60.99 70.52 64.99 64.99 65.99 62.65

X – Mean, Sx – standard deviation, Csx – skewness, Kx – kurtosis, Xmin – minimum observed value, Xmax – maximum observed value, Cv – coefficient of variation.
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2 days and 3 days ahead. The number of neurons in the hidden
layer was varied from 2 to 50 and best architecture was finalized
to capture the rainfall-inflow relationship for each category of in-
put data.

For comparison, only best models in each type (time-series,
cause-effect and combined models) are selected and shown in Ta-
ble 5. From Table 5 it is evident that the performances of lumped
and distributed data ANN pure cause-effect models are inferior to
the time-series models. The reason may be due to the difficulty in
capturing the pattern in the input and output data. The time-series
models have only one pattern where as the cause-effect models
have two different patterns. In time-series models the input and
output has same pattern however, in cause-effect models pattern
of input and output is different. From Table 5 it can also be seen
that distributed combined input models performed better than
lumped data pure cause-effect and time-series models. However,
the lumped combined input DL-ANN model 18 (3–6–3) obtained
best performances during training and testing and is slightly better
than distributed input data model especially for peaks and higher
lags.

In fact averaging by Thiessen polygon method produced a
smoothing of non-stationarities by averaging the fluctuations re-
corded at each rain-gauge station (Burlando et al., 1993; Toth
et al., 2000). Apart from this the major reason for better perfor-
mance of ANN lumped models are due to the better techniques
and their training approach, appropriate selection of network
architecture, required inputs, and also training–testing ratios of
the data set. DL-ANN model 18 with lead period of 1 day has ob-
tained maximum R (0.94), E (0.90) minimum RMSE (8.55), exhib-
ited minimum AIC (11051.7) and BIC (11058.24) respectively
during testing and appears to be a parsimonious model. Hence,
DL-ANN model 18 is selected as the best model among all the
ANN models. The scatter plot of the observed inflow and the mul-
ti-time-step ahead daily predicted inflow by DL-ANN model 18
during testing period is depicted in Fig. 2. The identified lumped
ANN model resulted in a reasonably accurate prediction of medium
inflow but not the peak inflows. The reason is that the rainfall

inflow relationship may be highly non-linear at peak inflow. In
ANN technique daily lumped models performed slightly better
than daily distributed models, because of reduced noise in the in-
put due to lumping the inputs. Also in daily lumped model it is
only two patterns to be recognized (one input series and one out-
put series) where as in distributed model it is ten patterns (nine
rainfall series and one inflow series).

9.2. Daily lumped and distributed data ANFIS models

In the present study various daily lumped and distributed input
data ANFIS models have been developed with input and output
parameters same as that of ANN models. In case of ANFIS models,
the number of membership function (MF) associated with each in-
put variable is fixed by trial and error. Excess number of MFs on the
input variable will increase the number of ‘‘if-then’’ fuzzy rules and
simultaneously increases the model complexity and hence affect
the model parsimony, hence numbers of MFs are varied up to four.
In case of distributed data model, the complexity is further in-
creased due to large number of input. Hence, in distributed input
data case subtractive fuzzy clustering method has been used to
classify the input data because of large input variables (Chang
and Chang, 2006).

The parsimonious structure that resulted in minimum error and
maximum efficiency during training and testing were selected as
the final form of ANFIS model. Due to smoothness and concise
notation, the bell membership functions are increasingly popular
for specifying fuzzy sets. The advantage of bell shaped membership
functions is that it has one more parameter than Gaussian mem-
bership functions, thus fuzzy set can be approached when the free
parameter is tuned, and the same is adopted in this study. The sta-
tistical performances of the best performed model in each type of
input like time-series ANFIS, cause-effect ANFIS, and combined AN-
FIS models are presented in Table 6.

Among the ANFIS models, it is found that lumped input data
cause-effect and time–series models performed equally better,
however, combined input data models performed better than the

Table 3
Model types and input combinations (daily and hourly lumped data).

Model type Model inputs No. of input
variables

Output variables

Daily lumped data models
Time-series models
DLa model 3 Q(t�2), Q(t�1), Q(t) 3 Q(t+1) Q(t+2) Q(t+3) – –
DL model 6 Q(t�5), Q(t�4), Q(t�3), Q(t�2), Q(t�1), Q(t) 6 Q(t+1) Q(t+2) Q(t+3) – –

Cause-effect models
DL model 10 Current average rainfall with two antecedent average rainfall 3 Q(t+1) Q(t+2) Q(t+3) – –
DL model 14 Current average rainfall with six antecedent average rainfall 7 Q(t+1) Q(t+2) Q(t+3) – –

Combined models
DL model 19 Current average rainfall and inflow with two antecedent average rainfall

and one antecedent inflow
5 Q(t+1) Q(t+2) Q(t+3) – –

DL model 20 Current average rainfall and inflow with three antecedent average rainfall
and two antecedent inflow

7 Q(t+1) Q(t+2) Q(t+3) – –

Hourly lumped data models
Time-series models
HLb Model 2 Current inflow with one antecedent inflow 2 Q(t+2) Q(t+4) Q(t+6) Q(t+8) Q(t+10)

HL model 3 Current inflow with two antecedent inflow 3 Q(t+2) Q(t+4) Q(t+6) Q(t+8) Q(t+10)

Cause-effect models
HL model 5 Current average rainfall with one antecedent average rainfall 2 Q(t+2) Q(t+4) Q(t+6) Q(t+8) Q(t+10)

HL model 6 Current average rainfall with two antecedent average rainfall 3 Q(t+2) Q(t+4) Q(t+6) Q(t+8) Q(t+10)

Combined models
HL model 11 Current average rainfall and inflow with one antecedent average rainfall 4 Q(t+2) Q(t+4) Q(t+6) Q(t+8) Q(t+10)

HL model 12 Current average rainfall and inflow with two antecedent average rainfall
and one inflow

5 Q(t+2) Q(t+4) Q(t+6) Q(t+8) Q(t+10)

a DL – Daily-lumped input data, time ‘t’ is in days.
b HL – Hourly lumped input data, time‘t’ is in hours.
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above models. It is also found that distributed input data models
performed slightly inferior to lumped data, because of clustering
effect as well as more complexity in fuzzifying large number of in-
put. All these ANFIS models, especially the peak and the higher lead
period prediction are better than the best ANN models. Thus from
Table 6 it is found that DL-ANFIS model 18 performed better than
any other ANFIS model. It is also seen that all the lumped time-ser-
ies and lumped combined ANFIS models performed better with
three membership functions whereas cause-effect models per-
formed better with two memberships function. The combined
DL-ANFIS model 18 with 1 day lead time obtained best values of
R (0.96), E (0.91), RMSE (8.07), AIC (10753.42) and BIC (10759.97).
Thus from the above results it may be concluded that the lumped
DL-ANFIS model 18, which used three inputs outperformed the
other ANFIS models. The scatter plot of DL-ANFIS model 18 with
lead time of 1 day, 2 day and 3 day is shown in Fig. 3. The superi-
ority of the ANFIS to ANN method may be due to fuzzy partioning
of the inputs space and creating a rule-base to generate the output.
From the scatter plots, it can be seen that low and medium inflows
are well predicted by the ANFIS model but peak inflows are still
under predicted. It is also observed that prediction of ANFIS model
at higher lead period (3 day) is found to be better than ANN mod-
els. The initial and final membership function for DL-ANFIS model
18 is shown in Fig. 4a and b respectively. From this membership
functions it is seen that the inflows between 60 and
200 � 106 m3 (that are high frequency inflows) has large number
of fuzzy rules and predicted well. Still the peak inflows are under
predicted. In this type also the model performance has deterio-
rated as the lead period increases from 1 day to 3 days.

9.3. Daily lumped and distributed data LGP models

For LGP modelling, Discipulus software package Pro Version Lite
4.0, developed by Francone (2004), was applied. Unlike ANN, in
LGP each multi-time step is modelled separately. Thus it is three
runs for each LGP model. The codes are defined in terms of func-
tions and terminal sets that modify the contents of internal mem-
ory and program counter. LGP algorithm produces multiple lists of
programs representing models with the best fit to its training and

calibrating data. Twenty different models, same as that of previous
techniques with various input combinations have been developed
using LGP technique. After several trials of LGP models, the func-
tional set and operational parameters are finalized and are given
in Table 7. The population size of 500 provided high search space
for LGP solution. The parameter ‘‘initial program size’’ and ‘‘maxi-
mum program size’’ indicate the maximum size of the program of
the initial population and of the population from subsequent gen-
erations, respectively. From various trials, it was observed that a
large initial program size, which leads to good initial exploration
of the search space, resulted better. GP usually results in higher
mutation rate (Kisi and Guven, 2010; Guven and Kisi, 2011) over
the generation. In GP model, a single solution evolves itself thor-
oughly before going for next generation. Thus for higher evolution
within the generation, a higher probability of mutation is required.
The objective function was to generate the computer program with
least MSE. The statistical performance resulted from the best mod-
els in each type of input like time-series; cause-effect and com-
bined input are shown in Table 8.

On analysing Table 8, it is apparent that the performance of LGP
is better than ANN and ANFIS model. In contrast to ANN in LGP
models the lumped cause-effect model is better than time-series
but distributed input cause-effect is equally good as that of time-
series. In both the case, the combined input performed better,
however, the lumped data model has edge over the distributed
data model. The reason may be due to the difficulty in capturing
the more patterns in the input and output data, same is advantage
as that of ANN models. From Table 8, it can be seen that distributed
LGP combined models performed better than lumped data cause-
effect and time-series models. From the Table 8 it can be revealed
that DL-LGP model 18 with 1 day ahead obtained the best statistics
of R (0.98), E (0.93), RMSE (6.95), AIC (9989.05), and BIC (9995.60)
respectively. Lumped combined LGP model produced excellent re-
sults for 1 day ahead and acceptable results for 2 days ahead and
reasonably accurate results for 3 days ahead prediction and is bet-
ter than ANN and ANFIS technique. There is no significant differ-
ence in R and E value from 1 day, 2 days and 3 days ahead inflow
prediction. The scatter plot of this best combined DL-LGP model
18 for 1 day, 2 days and 3 days ahead inflow prediction is shown

Table 4
Model type and input combinations (daily and hourly distributed data).

Model type Inputs variables Input
var.

Outputs variables

Daily Distributed data models
Cause-effect models
DDa model 6 P1(t�5), P1(t�4), P1(t�3), P1(t�2), P1(t�1), P1(t), P2(t�5), P2(t�4), P2(t�3), P2(t�2), P2(t�1), P2(t), P3(t�5), P3(t�4), P3(t�3),

P3(t�2), P3(t�1), P3(t), P4(t�5), P4(t�4), P4(t�3), P4(t�2), P4(t�1), P4(t), P5(t�5), P5(t�4), P5(t�3), P5(t�2), P5(t�1), P5(t),
P6(t�5), P6(t�4), P6(t�3), P6(t�2), P6(t�1), P6(t), P7(t�5), P7(t�4), P7(t�3), P7(t�2), P7(t�1), P7(t), P8(t�5), P8(t�4) P8(t�3),
P8(t�2), P8(t�1), P8(t), P9(t�5), P9(t�4), P9(t�3), P9(t�2), P9(t�1), P9(t)

54 Q(t+1) Q(t+2) Q(t+3) – –

DD model 7 Current rainfall from nine raingauge station with six antecedent rainfall from nine raingauge station 63 Q(t+1) Q(t+2) Q(t+3) – –

Combined models
DD model 19 Current rainfall from nine raingauge station and current inflow with three antecedent rainfall from nine

raingauge station and two antecedent inflows
39 Q(t+1) Q(t+2) Q(t+3) – –

DD model 20 Current rainfall from nine raingauge station and current inflow with four antecedent rainfall from nine
raingauge station and two antecedent inflows

48 Q(t+1) Q(t+2) Q(t+3) – –

Hourly distributed data models
Cause-effect models
HDb model 5 Current rainfall from nine raingauge station with four antecedent rainfall from nine raingauge station 45 Q(t+2) Q(t+4) Q(t+6) Q(t+8) Q(t+10)

HD model 6 Current rainfall from nine raingauge station with five antecedent rainfall from nine raingauge station 54 Q(t+2) Q(t+4) Q(t+6) Q(t+8) Q(t+10)

Combined models
HD model 11 Current rainfall from nine raingauge station and current inflow with three antecedent rainfall from nine

raingauge station and three antecedent inflow
40 Q(t+2) Q(t+4) Q(t+6) Q(t+8) Q(t+10)

HD model 12 Current rainfall from nine raingauge and current inflow with two antecedent rainfall from nine
raingauge station and three antecedent inflow

31 Q(t+2) Q(t+4) Q(t+6) Q(t+8) Q(t+10)

a DD – Daily-distributed input data, time ‘t’ is in days.
b HD – Hourly distributed input data, time ‘t’ is in hours.
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Table 5
Performance measures of daily lumped and distributed data ANN models.

Model Model type Performance criteria Training Testing

Lead period Lead period

1 Day 2 Days 3 Days 1 Day 2 Days 3 Days

Time-series model
DL-ANN model 6 (6–4–3) R 0.88 0.78 0.75 0.89 0.76 0.73

E 0.81 0.69 0.63 0.82 0.66 0.60
RMSE 12.79 12.35 11.00 11.06 11.25 11.06
AIC 13127.6 12947.3 12351.1 12378.68 12467.86 12379.10
BIC 13134.1 12953.8 12357.7 12385.23 12474.41 12385.65

Lumped data models
Cause-effect models
DL-ANN model 15 (8–4–3) R 0.84 0.78 0.78 0.82 0.75 0.73

E 0.75 0.72 0.67 0.76 0.72 0.64
RMSE 11.84 11.56 12.27 11.80 11.89 12.20
AIC 29699.35 29411.7 30128.0 12711.42 12752.35 12885.09
BIC 29706.7 29419.1 30135.4 12717.96 12758.90 12891.63

Combined models
DL-ANN model 18 (3–6–3) R 0.95 0.94 0.91 0.94 0.92 0.92

E 0.92 0.87 0.83 0.90 0.85 0.82
RMSE 8.37 10.45 10.93 8.55 10.56 10.74
AIC 25532.96 28194.2 28743.6 11051.70 12142.23 12230.26
BIC 25540.36 28201.6 28751.0 11058.24 12148.78 12236.80

Distributed data models
Cause-effect models
DD-ANN model 3 (27–18–3) R 0.82 0.81 0.78 0.75 0.72 0.70

E 0.71 0.70 0.68 0.73 0.71 0.65
RMSE 11.72 11.90 12.07 12.48 12.76 12.56
AIC 9441.07 9499.52 9553.92 4149.14 4185.60 4159.64
BIC 9447.33 9505.78 9560.17 4154.55 4191.00 4165.04

Combined models
DD-ANN model 15 (25–15–3) R 0.92 0.85 0.81 0.90 0.82 0.77

E 0.88 0.82 0.78 0.84 0.79 0.65
RMSE 13.00 10.78 11.14 12.22 10.79 11.06
AIC 9838.58 9120.45 9246.43 4114.55 3910.07 3950.68
BIC 9844.83 9126.70 9252.68 4119.95 3915.48 3956.08

Fig. 2. Scatter plot of observed and multi-time-step ahead predicted inflow by best DL-ANN model 18 during testing period (combined input).
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Table 6
Performance measures of daily lumped and distributed data ANFIS models.

Models No. of inputs Membership function Performance criteria Training Testing

Lead period Lead period

1 Day 2 Days 3 Days 1 Day 2 Days 3 Days

Time-series models
DL-ANFIS model 5 5 3 R 0.92 0.80 0.66 0.90 0.81 0.68

E 0.86 0.63 0.43 0.86 0.65 0.65
RMSE 10.96 11.50 12.47 10.56 11.21 11.63
AIC 28775.76 29348.33 30319.16 12142.69 12450.11 12639.18
BIC 28783.15 29355.73 30326.55 12149.24 12456.65 12645.73

Lumped data models
Cause-effect models
DL-ANFIS model 14 7 2 R 0.93 0.90 0.81 0.90 0.83 0.76

E 0.89 0.85 0.65 0.87 0.67 0.65
RMSE 11.41 11.55 12.05 11.80 12.731 12.44
AIC 29257.69 29403.06 29915.46 12711.42 13102.88 12986.68
BIC 29265.08 29410.45 29922.85 12717.96 13109.43 12993.26

Combined models
DL-ANFIS model 18 3 3 R 0.94 0.92 0.90 0.96 0.95 0.93

E 0.91 0.89 0.87 0.91 0.91 0.90
RMSE 7.94 7.88 8.37 8.07 8.26 8.43
AIC 24899.67 24809.44 25535.54 10753.42 10874.04 10982.75
BIC 24907.07 24816.83 25542.93 10759.97 10880.59 10989.30

Distributed models
Cause-effect models
DD-ANFIS model 4 36 2 R 0.91 0.84 0.82 0.87 0.85 0.81

E 0.87 0.82 0.78 0.79 0.73 0.73
RMSE 11.16 11.58 12.11 12.59 12.79 12.89
AIC 9253.31 9394.99 9566.61 4163.56 4189.45 4202.25
BIC 9259.56 9401.24 9572.86 4168.96 4194.86 4207.65

Combined models
DD-ANFIS model 16 28 3 R 0.94 0.89 0.88 0.92 0.88 0.85

E 0.85 0.76 0.72 0.89 0.76 0.69
RMSE 10.34 11.91 13.73 11.31 13.15 13.19
AIC 8960.64 10780.68 11204.07 4757.26 4861.19 5062.56
BIC 8966.89 10786.93 11210.32 4762.66 4866.59 5067.96

Fig. 3. Scatter plot of observed and multi-time step ahead predicted inflow by DL-ANFIS model 18 during testing period (combined input).
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in Fig. 5. From scatter plots, it is observed that LGP technique per-
formed very well for inflow prediction with shorter lead prediction
and slightly better for higher lead period. The Fig. 5b, shows that
the values are mostly underpredicted for higher lead prediction.
LGP has other certain advantages over the ANN and ANFIS such
as fewer controlling mathematical functions (and hence more flex-
ibility in data mining) and a built-in capacity to handle a large
amount of data. It is observed that a combination of rainfall and in-
flow variables in the input vector significantly improved the model
performances.

Fig. 4. (a) Initial membership function and (b) Final membership function of combined DL-ANFIS model 18.

Table 7
Parameters of the LGP model.

Parameter Values

Population size 500
Function set +, �, ⁄, /,

p
, ln(x), sin, cos, tan

Initial program size 80
Maximum program size 512
Crossover rate (%) 50
Homologous crossover (%) 50–95
Mutation rate (%) 90

Table 8
Performance measures of best daily lumped and distributed data LGP models.

Models No. of inputs Performance criteria Training Testing

Lead period Lead period

1 Day 2 Days 3 Days 1 Day 2 Days 3 Days

Time-series models
DL-LGP model 6 6 R 0.94 0.88 0.86 0.90 0.88 0.85

E 0.87 0.85 0.82 0.84 0.81 0.79
RMSE 10.28 11.19 11.54 10.60 11.39 11.54
AIC 28004.05 29020.59 29392.70 12159.02 12528.56 12596.78
BIC 28011.44 29027.99 29400.09 12165.57 12535.11 12603.32

Lumped data models
Cause-effect models
DL-LGP model 14 7 R 0.94 0.90 0.88 0.92 0.87 0.81

E 0.87 0.85 0.79 0.86 0.76 0.69
RMSE 10.58 11.01 11.71 10.46 11.89 12.22
AIC 28344.84 28829.49 29915.46 12091.65 12752.35 12885.09
BIC 28352.23 28836.89 29922.85 12098.20 12758.40 12891.63

Combined models
DL-LGP model 18 3 R 0.97 0.96 0.96 0.98 0.96 0.95

E 0.95 0.92 0.92 0.93 0.92 0.92
RMSE 6.80 7.43 7.69 6.95 7.43 7.69
AIC 23043.53 24102.04 24518.15 9989.05 10331.1 10509.50
BIC 23050.9 24109.44 24525.54 9995.60 10337.71 10516.05

Distributed data models
Cause-effect models
DD-LGP model 5 45 R 0.87 0.74 0.66 0.89 0.77 0.68

E 0.74 0.54 0.41 0.81 0.57 0.42
RMSE 14.56 14.96 16.48 16.70 15.37 16.15
AIC 10273.20 10377.13 10748.24 4627.72 4491.36 4572.69
AIC 10273.20 10377.13 10748.24 4627.72 4491.36 4572.69

Combined models
DD-LGP model 16 28 R 0.94 0.92 0.93 0.95 0.90 0.91

E 0.87 0.86 0.86 0.90 0.84 0.82
RMSE 10.22 10.83 11.01 10.89 12.66 13.91
AIC 8915.87 9138.20 9201.41 3925.23 4172.67 4327.37
BIC 8922.12 9144.45 9207.67 3930.63 4178.07 4332.78
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The impact of each input vector was analysed and is presented in
Table 9. A value of 100% in the frequency column indicates that the
particular input variable appeared in set of all best programs. The
average and maximum effect of removing all the instances of a par-
ticulars input from each best program is also presented. The results
are scaled between 0 and 1. A value of 1 represents the largest impact
value possible. It is seen that the lag one rainfall and inflow has the
highest impact in predicting the future inflow. Thus based on the re-
sults it may be concluded that the LGP model has a great ability to
learn from input–output patterns and work efficiently for reservoir
inflow prediction with greater accuracy. In addition, there is only
marginal difference between DL and DD-LGP models. Thus, LGP
models overcome the problem of lumping the input data.

9.4. Hourly lumped and distributed data GFF Models (ANN)

In the present study, Generalized Feed Foreword (GFF) network
with conjugate gradient (CG) algorithm is adopted for hourly data
models. It is found that the TDRNN worked better for daily data but
performed poorly for the hourly data (Magar, 2011). The reason is
that the higher cross correlation and autocorrelation among the in-
put variables lead to overtraining of the TDRNN network. GFF with
two hidden layer network has performed better and hence adopted
in this study. The input vector (number of inputs) for input layer
depends upon type of model as shown in Table 3. The neurons in
the output layer (five numbers) represent the inflow at 2 h, 4 h,
6 h, 8 h and 10 h ahead hourly inflow being modelled. The opti-
mum number of neurons (N) in the hidden layer is varied from 2
to 30 and best architecture was finalized to capture the rainfall–in-
flow relationship. The performance summary of best lumped and
distributed data ANN models during training and testing periods
are displayed in Table 10.

The daily ANN models are better than hourly models due to two
reasons (i) the time step and (ii) secondly the length of data in case

of daily models is 47 years (17,165 data sets) out of which 12,015
data set used for training and 5150 data set for testing, where as in
case of hourly data out of total 4 years (14,688 data sets), 10,281
data set is used for training and 4407 data set is used for testing.
This result indicates that even the non-linear ANN model could
not predict the peak inflows properly, may be because of very high
non-linearity in the observed peak inflows; hence, the other non-
linear techniques are attempted.

9.5. Hourly lumped and distributed data ANFIS models

Similar to daily lumped and distributed data models, hourly
lumped and distributed data ANFIS models have been developed
with input and output parameters. In case of ANFIS models the
number of membership functions (MFs) are varied and associated
with each input variable are set by trial and error. It is found that
large number of MFs on the input variable increased the perfor-
mance due to the large number of if then fuzzy rules and at the
same time increases the model complexity and hence affected
the model parsimony. Therefore, numbers of MFs are varied be-
tween 2 and 4 to comprise parsimonious models. The resulted sta-
tistical performances of the best lumped and distributed data
ANFIS models is shown in Table 10. Studying the performance of
all the ANFIS models it is found that HL-ANFIS model 12 performs
better than any other model. The combined model HL-ANFIS 12
with 2 h lead period displayed best values of R (0.93), E (0.87),
RMSE (80.43) and %MF as 9.54 respectively. Even though the pre-
diction accuracy of 10 h lead period is less than 2 h, there is no sig-
nificant reduction in the performance.

9.6. Hourly lumped and distributed data LGP models

The LGP soft computing technique, which provides input–
output relationship, has also been employed for prediction of

Fig. 5. Scatter plot of observed and multi-time-step ahead predicted inflow by DL-LGP model 18 during testing period (combined input).
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multi-time-step hourly inflow prediction. In hourly multi-time
step model, it is five runs for each LGP model. The performances
of best models in each type are listed in Table 10. From Table 10
it can be observed that time-series HL-LGP model 2 outperformed
all the models. In LGP models, also the time-series and cause-effect
models performed equally well. However, the combined input
models outperformed for higher lead period. Analysing the results
of HL combined models, Table 10 shows that all the combined HL-
LGP models resulted in acceptable results, showing almost compa-
rable values of goodness of fit criteria and better than other tech-
niques for same number of inputs. From the Table 10 it can be
revealed that combined HL-LGP model 11 outperformed all other
models especially for of 2 h lead period and obtained the best sta-
tistics of R (0.98), E (0.93), RMSE (77.81), and %MF 8.81%
respectively.

The scatter plot of observed and predicted inflow by the best
combined HL-LGP model 11 with 2 h, 4 h, 6 h, 8 h and 10 h predic-
tion is shown in Fig. 6. From the scatter plot, it can be observed that
all inflow values such as low, medium, and peak are clustered
along the ideal line. It is seen that in hourly data modelling also,
the antecedent inflow has highest impact followed by antecedent
rainfall. This also indicates that average time of concentration is
around 2 h only. However, the LGP model has predicted very well
up to 8 h lead prediction (Fig. 6a–d). Thus from the hourly lumped

input data LGP model it may be concluded that the LGP models
have a great ability to map the relationship from input–output pat-
terns and work strongly in reservoir inflow prediction with greater
accuracy.

10. Conclusions

This study investigated the applicability and capability of AI
models for inflow forecasting applied to Koyna watershed in Maha-
rashtra, India. Two different set of inputs are studied, firstly a
lumped input data and secondly a distributed data input for the
same basin. Twenty daily data models and twelve hourly data
models are developed based on different input structure combina-
tion such as time-series, cause-effect and combined models and
also their performances are evaluated. The daily and hourly ANN
model results suggested that the choice of the number of inputs,
percentage of data for training and testing, number of hidden
nodes, network memory structure has an impact on the model pre-
diction efficiency and found to be by trial and error. It is concluded
that ANN technique still requires large number of trial and error
work and time consuming efforts involved in developing the struc-
tures to achieve optimal performance. Also, the time-series models
performed better than pure cause-effect models. Since in time-ser-
ies it is only two patterns, where as in cause-effect it is ten patterns
to be recognized.

ANFIS models performed better than ANN models for daily data
set due to fuzzification of inputs in terms of membership functions.
ANFIS models predicted medium and peak inflows better than ANN
models. Thus, it may be concluded that neuro-fuzzy approach has
the advantage of reduced training time not only due to its smaller
dimensions but also due to the ability of the network to initialize
with parameters relating to the problem domain. It may be

Table 9
Impact of each input variable in the combined DL-LGP model 18.

Input parameters Frequency (%) Average impact Maximum

Impact
P(t�1) 63 0.018 0.039
P(t) 83 0.132 0.246
Q(t) 100 0.255 0.745

Table 10
Performance measures of hourly lumped and distributed data models.

Models Performmance criteria Training Testing
Lead period Lead period

2 h 4 h 6 h 8 h 10 h 2 h 4 h 6 h 8 h 10 h

Lumped data ANN Combined model
HL-ANN model 12(5–7–7–5) R 0.93 0.95 0.93 0.92 0.90 0.91 0.89 0.89 0.88 0.84

E 0.79 0.54 0.76 0.73 0.70 0.81 0.90 0.88 0.83 0.81
RMSE 113.08 114.82 122.79 132.40 140.55 113.08 114.82 122.79 132.40 140.55
%MF 12.45 �12.78 �2.75 �3.12 �12.65 11.39 �1.50 5.90 1.34 �2.11

Distributed data ANN Combined model
HD-ANN model 8(19–10–10–5) R 0.92 0.92 0.91 0.89 0.88 0.92 0.91 0.90 0.87 0.86

E 0.86 0.88 0.86 0.79 0.77 0.85 0.82 0.80 0.78 0.76
RMSE 162.64 247.71 160.31 297.98 211.72 145.59 269.85 292.28 295.68 298.26
%MF 16.56 �17.34 �17.89 �15.90 23.23 10.82 �25.46 �16.40 �25.85 25.87

Lumped data ANFIS Combined model
HL-ANFIS model 12 R 0.95 0.94 0.92 0.88 0.88 0.93 0.92 0.88 0.86 0.85

E 0.90 0.88 0.87 0.84 0.82 0.87 0.90 0.92 0.85 0.83
RMSE 79.09 81.32 82.32 83.87 84.11 80.43 82.43 84.76 85.65 86.98
%MF 10.45 �13.87 �12.75 13.09 14.98 9.54 �12.78 �10.86 11.76 12.76

Distributed data ANFIS Combined model
HD-ANFIS model 11 R 0.95 0.94 0.92 0.90 0.88 0.93 0.92 0. 90 0.88 0.85

E 0.92 0.85 0.84 0.81 0.79 0.87 0.86 0.87 0.85 0.83
RMSE 79.09 81.32 82.32 83.87 84.11 93.12 82.43 84.76 85.65 86.98
%MF 10.45 �13.87 �12.75 13.09 14.98 12.90 �12.78 �10.86 11.76 12.76

Lumped data LGP Combined model
HL-LGP model 11 R 0.98 0.95 0.92 0.90 0.89 0.98 0.94 0.92 0.88 0.86

E 0.95 0.91 0.87 0.83 0.81 0.93 0.90 0.85 0.82 0.83
RMSE 75.76 76.76 77.32 77.41 77.65 77.81 78.25 81.76 84.09 84.23
%MF �5.47 �11.06 �8.73 �9.76 �12.06 8.81 �9.10 11.05 �1.54 �1.41

Distributed data LGP Combined model
HD-LGP model 8 R 0.97 0.94 0.92 0.89 0.87 0.95 0.93 0.92 0.88 0.85

E 0.94 0.88 0.33 0.79 0.83 0.90 0.91 0.87 0.82 0.83
RMSE 98.64 117.71 120.31 137.98 149.43 87.58 126.52 116.76 132.53 143.33
%MF �8.15 �8.62 �8.60 �23.52 �14.54 11.54 �13.84 �14.58 �13.47 14.43
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concluded that due to exponential relationship in ANFIS theory,
increasing the number of inputs added the model complexity and
reduced the performance of the models.

LGP models responded well to most of the fluctuations within
the data and have resulted in better prediction of low, medium
and peak inflows amongst all the models developed in this study.
The reason may be due to fewer mathematical functions and better
build in capacity used in LGP. Also, the lumped and distributed
model performs equally better since they are highly correlated.
LGP models found to be easier to model, less time consuming
and are recommended for their wider application to other reser-
voirs. In case of lumped data models, DL-LGP model 18 obtained
the best statistics of R (0.98), E (0.93), RMSE (6.95), AIC (9989.05),
and BIC (9995.60) respectively and in case of distributed data mod-
els, DD-LGP model 16 obtained the best statistics of R (0.95), E

(0.90). In case of hourly data models, HL-LGP model 11 (input
structure of P(t�1), P(t), Q(t�1), Q(t)) outperformed all other models
and obtained the best statistics of R (0.98), E (0.93), RMSE
(77.81), and %MF 8.81% respectively. It may be concluded that
the LGP models captured the linear as well as non-linear relation-
ship in reservoir inflow accurately. It is also found that irrespective
of the technique used, combined input with three dimensions per-
formed well, but the reason is not known and further research may
be explored in this direction.
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Appendix A. Model performance criteria

Performance criteria’s Equation

Coefficient of
correlation (R)

PN

i¼1
ðobsi�avgobsiÞðcalci�avgcalciÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
ðobsi�avgobsiÞ2

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
ðcalci�avgcalciÞ2

q
Nash Sutcliffe

efficiency (E) E ¼ 1�
PN

i¼1
ðobsi�calciÞ2PN

i¼1
ðobsi�avg:obsiÞ2

Akaike information
criterion (AIC) and
Bayesian
information
criterion (BIC)

AIC ¼ m lnðRMSEÞ þ 2n
BIC ¼ m lnðRMSEÞ þ n lnðmÞ

Root mean square
error (RMSE) RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðobsi�calciÞ2

n

r

Percentage mean error
in estimating peak
flow (%MF)

%MF ¼ max:calci�max:obsi
max:calci

� 100

Where obsi = observed inflow, calci = calculated/predicted
inflow, avg.obsi = average observed inflow,
avg.calci = average calculated/predicted inflow.
E = Efficiency of the model; ‘m’ is the number of input–
output patterns, and ‘n’ is the number of parameters to be
estimated. max.calci = maximum estimated flow,
max.obsi = maximum observed flow

References

Aqil, M., Kita, I., Yano, A., Nishiyama, S., 2007. A comparative study of artificial
neural networks and neuro-fuzzy in continuous modelling of the daily and
hourly behaviour of runoff. Journal of Hydrology 337 (1–2), 22–34.

ASCE Task Committee, 2000a. Artificial neural networks in hydrology I: Preliminary
concepts. Journal of Hydrologic Engineering, ASCE 5 (2), 115–123.

ASCE Task committee, 2000b. Artificial neural networks in hydrology II: Hydrologic
applications. Journal of Hydrologic Engineering, ASCE 5 (2), 124–137.

Aytek, A., Alp, M., 2008. An application of artificial intelligence for rainfall-runoff
modelling. Journal of Earth System Sciences 117 (2), 145–155.

Babovic, V., Keijzer, M., 2000. Genetic programming as model induction engine.
Journal of Hydroinformatics 2 (1), 35–60.

Bouzerdoum, A., Mueller, R., 2003. A generalized feedforward neural network
architecture and its training using two stochastic search methods. In: Cantu-
Paz, E. et al. (Eds.), GECCO, LNCS 2723. Springer, Verlag Berlin Heidelberg, pp.
742–753.

Box, G.E.P., Jenkins, G.M., 1976. Time Series Analysis Forecasting and Control,
second ed. Holden Day, San Francisco.

Brameier, M., 2004. On Linear Genetic Programming. Ph.D. Thesis, University of
Dortmund, Germany.

Brameier, M., Banzhaf, W., 2001. Evolving teams of predictors with linear genetic
programming. Genetic Programming and Evolvable Machines 2 (4), 381–407.

Brameier, M., Banzhaf, W., 2007. Linear Genetic Programming. Springer Science
+Business Media, New York (NY).

Brameier, M., Kantschik, W., Dittrich, P., Banzhaf, W., 1998. SYSGP-AC++ Library of
Different GP Variants. Technical Report CI-98/48, Collaborative Research Centre
531, University of Dortmund, Germany.

Burlando, P., Rosso, R., Cadavid, L.G., Salas, J.D., 1993. Forecasting of short-term
rainfall using ARMA models. Journal of Hydrology 144 (1–4), 193–211.

CDO, 1992. Final Report on Revised Flood Study for Koyna Dam. Government of
Maharashtra, Central Design Office, Irrigation Department, India.

Chang, F.J., Chang, L.C., Huang, H.L., 2002. Real-time recurrent learning neural
network for stream-flow forecasting. Hydrological Processes 16 (13), 2577–
2588.

Chang, F.J., Chang, Y.T., 2006. Adaptive neuro-fuzzy inference system for prediction
of water level in reservoir. Advances in Water Resources 29, 1–10.

Chang, L.C., Chang, F.J., Chiang, Y.M., 2004. A two-step-ahead recurrent neural
network for stream flow forecasting. Hydrological Processes 18 (1), 81–92.

Chau, K.W., Wu, C.L., Li, Y.S., 2005. Comparison of several flood forecasting models
in Yangtze river. Journal of Hydrological Engineering. ASCE 10 (6), 485–491.

Chen, S.H., Lin, H.Y., Chang, L.C., Chang, F.J., 2006. The strategy building a flood forecast
model by neuro-fuzzy network. Hydrological Processes 20 (7), 1525–1540.

Chidthong, Y., Tanaka, H., Supharatid, S., 2009. Developing a hybrid multi-model for
peak flood forecasting. Hydrological Processes 23 (12), 1725–1738.

Coulibaly, P., Anctil, F., Bobee, B., 2000. Daily reservoir inflow forecasting using
artificial neural networks with stopped training approach. Journal of Hydrology
230 (3–4), 244–257.

Dastorani, M.T., Afkhami, H., Sharifidarani, H., Dastorani, M., 2010. Application of
ANN and ANFIS models on dry land precipitation (Case study: Yazd in Central
Iran). Journal of Applied Sciences 10 (20), 2387–2394.

de Vos, N.J., Rientjes, T.H.M., 2005. Constraints of artificial neural networks for
rainfall–runoff modelling: trade-offs in hydrological state representation and
model evaluation. Hydrology Earth System Sciences 9, 111–126.

Dorum, A., Yarar, A., Sevimili, M.F., Onucyildiz, M., 2010. Modelling the rainfall–
runoff data of Susurluk basin. Journal of Expert System with Applications 37 (9),
6587–6593.

Drunpob, A., Chang, N.B., Beaman, M., 2005. Stream flowrate prediction using
Genetic Programming Model in a semi-arid coastal watershed. In: Walton,
Raymond (Ed.), Proceedings of World Water and Environmental Resources
Congress, May 15–19, 2005. ASCE, Anchorage, Alaska, USA.

Elman, J.L., 1990. Finding structure in time. Cognitive Science 14, 179–211.
Elshorbagy, A., Corzo, G., Srinivasulsu, S., Solomatine, D.P., 2010a. Experimental

investigations of the predictive capabilities of data driven modelling techniques
in hydrology – Part 2: Application. Hydrology Earth System Sciences 14, 1943–
1961.

Elshorbagy, A., Corzo, G., Srinivasulu, S., Solomatine, D.P., 2010b. Experimental
investigation of the predictive capabilities of data driven modeling techniques
in hydrology – Part 1: Concepts and methodology. Hydrology Earth System
Sciences 14, 1931–1941.

Firat, M., 2008. Comparison of artificial intelligence techniques for river flow
forecasting. Hydrology and Earth System Sciences 12 (1), 123–139.

Firat, M., Gungor, M., 2008. Hydrological time-series modelling using an adaptive
neuro-fuzzy inference system. Hydrological Processes 22 (13), 2122–2132.

Foster, J.A., 2001. Review: discipulus: a commercial genetic programming system.
Genetic Programming and Evolvable Machines 2 (2), 201–203.

Francone, F., 2004. Discipulus Lite™ Owner’s Manual, Version 4.0. Register Machine
Learning Technologies, Inc.

Garg, V., Jothiprakash, V., 2010. Reservoirs trap efficiency estimation using artificial
neural networks and genetic programming. Journal of Hydrologic Engineering
ASCE 12 (15), 1001–1015.

Giles, C.L., Lawrence, S., Tsoi, A.C., 1997. Rule inference for financial prediction using
recurrent neural networks. In: Proceedings of IEEE/IAFE Conference on
Computational Intelligence for Financial Engineering, (CIFEr) IEEE, Piscataway,
NJ; 253–259.

Googhari, S.K., Feng, H.Y., Ghazali, A.H.B., Shui, L.T., 2010. Neural networks for
forecasting Daily Reservoir Inflows. Pertanika Journal Science and Technology
18 (1), 33–41.

Guven, A., 2009. Linear genetic programming for time-series modelling of daily flow
rate. Journal of Earth System Science 118 (2), 137–146.

Guven, A., Kisi, O., 2011. Daily pan evaporation modeling using linear genetic
programming technique. Irrigation Science 29 (2), 135–145.

Htike, K.W., Khalifa, O.O., 2010. Rainfall forecasting models using focused time-
delay neural networks. In: International Conference on Computer and
Communication Engineering (ICCCE), 11–12 may, Kuala Lumpur, Malaysia
978-1-4244-6235-3/10� IEEE.

Hung, N.Q., Babel, M.S., Weesakul, S., Tripathi, N.K., 2009. An artificial neural
network model for rainfall forecasting in Bangkok, Thailand. Hydrology Earth
System Sciences 13, 1413–1425.

Jain, A., Indurthy, S.K.V.P., 2003. Comparative analysis of event based rainfall–runoff
modelling techniques – deterministic, statistical and artificial neural networks.
Journal of Hydrologic Engineering, ASCE 8 (2), 93–98.

Jang, J.S.R., 1993. Anfis: adaptive-network-based fuzzy inference system. IEEE
Transactions on Systems, Man and Cybernetics 23 (3), 665–685.

Jothiprakash, V., Kote, A.S., 2010. Improving the performance of data-driven
techniques through data pre-processing for modelling daily reservoir inflow.
Hydrological Sciences Journal 56 (1), 168–186.

Jothiprakash, V., Magar, R.B., Kalkutki, S., 2010. Lumped and distributed data
rainfall–runoff models using artificial neural network for an intermittent river.
Journal of Flood Engineering 1 (2), 159–173.

Jothiprakash, V., Magar, R., Kalkutki, S., 2009. Rainfall–runoff models using adaptive
neuro fuzzy inference system (ANFIS) for an intermittent river. International
Journal of Artificial Intelligence, Autumn 3 (A09), 1–23.

Jothiprakash, V., Magar, R., 2009. Soft computing tools in rainfall–runoff modelling.
ISH Journal of Hydraulic Engineering 15 (SP-1), 84–96.

Karamouz, M., Razavi, S., Araghinejad, S., 2008. Long-lead seasonal rainfall
forecasting using time-delay recurrent neural networks: a Case study.
Hydrological Processes 22, 229–241.

Keskin, M.E., Taylan, D., Terzi, O., 2006. Adaptive neural-based fuzzy inference
system (ANFIS) approaches for modelling hydrological time-series.
Hydrological Sciences Journal 51 (4), 588–598.

Kisi, O., Guven, A., 2010. Evapotranspiration modeling using linear genetic
programming technique. Journal of Irrigation and Drainage Engineering, ASCE
136 (10), 715–723.

Kote, A.S., Jothiprakash, V., 2009a. Stochastic and artificial neural network models
for reservoir inflow prediction. Journal of Institution of Engineers (India) 90
(18), 25–33.

306 V. Jothiprakash, R.B. Magar / Journal of Hydrology 450–451 (2012) 293–307



Author's personal copy

Kote, A.S., Jothiprakash, V., 2009b. Monthly reservoir inflow modelling using time
lagged recurrent networks. International Journal of Tomography and Statistics
12 (F09), 64–84.

Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA.

Luk, K.C., Ball, J.E., Sharma, A., 2000. A study of optimal model lag and spatial inputs to
artificial neural network for rainfall forecasting. Journal of Hydrology 227, 56–65.

Magar, R.B., Jothiprakash, V., 2011. Intermittent reservoir daily-inflow prediction
using lumped and distributed data multi-linear regression models. Journal of
Earth System Sciences 120 (6), 1067–1084.

Magar, R. B., 2011. Real-Time Reservoir Inflow Prediction Using Soft Computing
Techniques. Ph.D thesis Report, Indian Institute of Technology Bombay,
Mumbai.

Maier, H., Dandy, G., 2000. Neural networks for the predictions and forecasting of
water resources variables: review of modelling issues and applications.
Environmental Modelling and Software 15, 101–124.

Maier, H.R., Jain, A., Dandy, G.C., Sudheer, K.P., 2010. Methods used for the
development of neural networks for the prediction of water resource variables
in river systems: current status and future directions. Environmental Modelling
and Software 25 (8), 891–909.

Makkeasorn, A., Chang, N.B., Zhou, X., 2008. Short-term streamflow forecasting with
global climate change implications – a comparative study between genetic
programming and neural network models. Journal of Hydrology 352 (3–4),
336–354.

Mohammadi, K., Eslami, H.R., Kahawita, R., 2006. Parameter estimation of an ARMA
model for river flow forecasting using goal programming. Journal of Hydrology
331 (1–2), 293–299.

Mohan, S., Jothiprakash, V., 2000. Fuzzy system modelling for optimal crop
planning. Journal of Institution of Engineers (India) 81 (CV), 9–17.

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models. A
discussion of principles. Journal of Hydrology 10 (3), 282–290.

Nayak, P.C., Sudheer, K.P., Ramasastri, K.S., 2005. Fuzzy computing based rainfall–
runoff model for real time flood forecasting. Hydrological Processes 19, 955–968.

Nayak, P.C., Sudheer, K.P., Rangan, D.M., Ramasastri, K.S., 2004. A neuro-fuzzy
computing technique for modelling hydrological time series. Journal of
Hydrology 291 (1–2), 52–66.

Oltean, M., Grosan, C., 2003. A comparison of several linear genetic programming
techniques. Complex-Systems 14 (4), 285–313.

Peng, C.S., Buras, N., 2000. Practical estimation of inflows into multireservoir
system. Journal of Water Resources Planning and Management, ASCE 126 (5),
331–334.

Razavi, S.R., Araghinejad, S., 2009. Reservoir inflow modelling using temporal neural
networks with forgetting factor approach. Water Resources Management 23 (1),
39–55.

Salas, J.D., Delleur, V., Yevjevich, V., Lane, W.L., 1980. Applied Modelling of
Hydrologic Time-Series. Water Resources Publication, Littleton, Colorado,
484p (2nd printing 1985, 3rd printing, 1988).

Shanker, M., Hu, M.Y., Hung, M.S., 1996. Effect of data standardization on neural
network training. International Journal Management Sciences 24 (4), 385–397.

Singh, V.P., 1988. Hydrologic Systems, Vol. 1: Rainfall–Runoff Modelling. Prentice
Hall, Eaglewood Cliffs, NJ.

Sivakumar, B., Jayawardena, A.W., Fernando, T.M.K.G., 2002. River flow forecasting:
use of phase-space reconstruction and artificial neural networks approaches.
Journal of Hydrology 265 (1–4), 225–245.

Smith, J., Eli, R.N., 1995. Neural network models of rainfall–runoff process. Journal of
Water Resources Planning and Management, ASCE 121, 499–508.

Sorooshian, S., Duan, Q., Gupta, V.K., 1993. Calibration of rainfall–runoff models:
application of global optimization to the Sacramento soil moisture accounting
model. Water Resources Research 29 (4), 1185–1194.

Srinivasulu, S., Jain, A., 2006. A comparative analysis of training methods for
artificial neural network rainfall–runoff models. Applied Soft Computing 6 (3),
295–306.

Thirumalaiah, K., Deo, M.C., 2000. Hydrological forecasting using neural networks.
Journal of Hydrologic Engineering, ASCE 5 (2), 180–189.

Thomas, H.A., Fiering, M.B., 1962. Mathematical synthesis of streamflow sequences
for the analysis of river basins by simulation. In: Maass, A. et al. (Eds.), Design of
Water Resources Systems. Harvard University Press, Cambridge, USA: Mass, pp.
459–493 (Chapter 12).

Tokar, A.S., Markus, M., 2000. Precipitation-runoff modeling using artificial neural
networks and conceptual models. Journal of Hydrologic Engineering, ASCE 5 (2),
156–161.

Tokar, A.S., Johnson, P.A., 1999. Rainfall–runoff modelling using artificial neural
networks. Journal of Hydrologic Engineering ASCE 4 (3), 232–239.

Toth, E., Brath, A., Montanari, A., 2000. Comparison of short-term rainfall prediction
models for real-time flood forecasting. Journal of Hydrology 239 (1–4), 132–
147.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.J., 1989. Phoneme
recognition using time-delay neural networks. IEEE Transactions on Acoustics,
Speech, and Signal Processing 37 (3), 328–339.

Wang, W., Van Gelder, P.H.A.J.M., Vrijling, J.K., Ma, J., 2006. Forecasting daily
streamflow using hybrid ANN models. Journal of Hydrology 324, 383–399.

Wang, W., Chau, K.W., Chang, C.T., Qui, L., 2009. A comparison of performance of
several artificial intelligence methods for forecasting monthly discharge time
series. Journal of Hydrology 374 (3–4), 294–306.

Wu, C.L., Chau, K.W., 2011. Rainfall–runoff modeling using artificial neural network
coupled with singular spectrum analysis. Journal of Hydrology 399, 394–409.

Whigham, P.A., Crapper, P.F., 2001. Modelling rainfall–runoff relationship using
genetic programming. Mathematical and Computer Modelling 33 (6–7), 707–
721.

Yeh, W.W.-G., 1985. Reservoir management and operation models: a state-of-the
art review. Water Resources Research 21 (12), 1797–1818.

Yevjevich, V.M., 1963. Fluctuations of wet and dry years, Part I, Research data
assembly and mathematical models. Colorado State University Hydrology Paper
1, 55 pp. (Available from Department of Earth Resources, Colorado State
University, Fort Collins, CO 80523).

Zhang, J., Cheng, C.T., Li, S., Wu, L.X.Y., Shen, J.J., 2009. Daily reservoir inflow
forecasting combining QPF into ANNs model. Hydrology Earth System Sciences
Discussions 6, 121–150.

V. Jothiprakash, R.B. Magar / Journal of Hydrology 450–451 (2012) 293–307 307


