
Attenuators

Attenuator is a two port resistive network. It is used to reduce the signal level when used between a generator
and load. Attenuators may be symmetrical or asymmetrical. They may provide fixed or variable attenuation.
A fixed attenuator is also called a pad. The attenuation is measured in decibels (dB) or nepers.
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There are 4 types of attenuators.
(i) T = type attenuator

(ii) p = type attenuator
(iii) Lattice type attenuator
(iv) Bridged T = type attenuator
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Figure 1 show a symmetrical T = attenuator. Each series
arm is assumed to have a resistance of R1 Ω while the
resistance of shunt arms equals RB Ω.

Applying KVL to the network,
R2(I1 – I2) = I2(R1 + R0)

I2(R2 + R1 + R0) = I1R2 Fig. 1
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Characteristic impedance is R0 when it is attenuated in a load of R0
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Substituting Eq. (i),
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From Eq. (ii)
NR2 = R2 + R1 + R0

(N – 1) R2 = R1 + R0
Substituting Eq. (ii),

(N – 1) R2 = 0 ( 1)

1

R N

N

�
�

 + R0

(N – 1) R2 = 02

1

NR

N �

R2 = 0
2

2

1

NR

N �

πππππ���������	
����

Figure 2 show a symmetrical p attenuator. The series and shunt elements of this attenuator can be specified in
terms of characteristic impedance and propagation constant.

Fig. 2

For resistive network z0 = R0 and g = a
R1 = R0 sinh a
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Figure 3 shows a lattice attenuator. The elements of lattice attenuator can be specified in terms of characteristic
impedance and propagation constant.

Fig. 3

We know that

z0 = SC OCz z

Redrawing the lattice network,

Fig. 4
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Applying KVL to the network,
I1R0 = (I1 – I) R1 + I2R0 + (I + I2)R1

I1R0 = R1(I1 + I2) + I2R0

I1(R0 – R1) = I2(R1 + R0)
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