SE (EXTC) SEMIII (old) MM-DEL 2013.

4112/13

407

12: 2nd half.13-Avi(af)

Con. 5438-13.

(OLD COURSE)

LJ-10334

		(3 Hours) ['	Total Marks: 100
N	₹.В. :	 Question No. 1 is compulsory. Out of remaining questions, attempt any four questions. Assume suitable additional data if required. Figures in brackets on the right hand side indicate full marks 	
1.	(B) (C)	Give characteristics of logic families. Compare combinational circuits with sequential circuits. Implement $Y = \overline{A} + BC$ using only NAND gates. Give TTL and CMOS interfacing.	(05) (05) (05) (05)
2.	(A)	Using Boolean laws prove that (i) $AB + BC + \overline{AC} = AB + \overline{AC}$ (ii) $\overline{ABC} + A\overline{BC} + A\overline{BC} + ABC = AB + \overline{BC} + CA$	(10)
	(B)	(ii) $ABC + ABC + ABC + ABC = AB + BC + CA$. Write (24) ₁₀ into its Binary, BCD code, Hexadecimal, and Ex-3 code.	(10)
3.	(A)	Implement the following Boolean equation using single 8:1 MUX at logic gates: $F(A, B, C, D) = \sum m(0, 1, 3, 4, 8, 9, 15)$.	nd few (10)
	(B)	Using Quine McClusky method, minimize the following: $F(A, B, C, D) = \sum_{\epsilon} m(0, 1, 3, 7, 8, 9, 11, 15, 22, 24, 27) + d(6, 16).$	(10)
4.	(A)	What is shift register? Explain any one type of shift register. Gapplication.	ive its (10)
•	(B)	Design Excess-3 to BCD code converter.	(10)
5.	` '	Draw a neat circuit of BCD adder using IC 7483 and explain. Explain any one application of Johnson counter.	(10) (10)
6.	(A)	Design a synchronous counter using D type flip flops for getting the following sequence: $1-3-5-7-1$. Take care of lockout condition.	lowing (10)
	(B)	It is desired to develop the circuit for controlling a lamp on a state between 1 st and 2 nd floor of a building. Each floor is having only one so If a lamp is made 'ON' using switch of 1 st floor, one should be able to it 'OFF' using a switch of 2 nd floor and vice-versa. Design the circuit is same. Implement the same using only NOR gates.	switch. switch
7.	(A) (B)	Explain the following: Conversion of D type flip flop into T type flip flop. FPGA.	(07) (07)
	(C)	Comparison of TTL with CMOS logic families.	(06)

St Sem III (Old) Electrical Networks 20112/2013 (EXTC)

102:2nd-half 13(a)-JP

Con. 5444-13.

(OLD COURSE)

LJ-10433

(3 Hours)

[Total Marks: 100

- N.B. (1) Question No. 1 is compulsory.
 - (2) Answer any four questions from remaining six questions.
 - (3) Assume suitable data if necessary and state them clearly.
- 1. (a) For the network shown below, the poles and zeros of the driving point function Z(s) 5 are at the following locations:

Poles at
$$-\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$$
, zero at -1 .

If Z (jo) = 1, determine the values of R, L and C.

(b) For the given network, $i_L = e^{-t}$, L = 1H, C = 1F and $R = 1\Omega$. Determine I.

(c) For the given incidence matrix, obtain the linear graph

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & -1 \\ 0 & 0 & -1 & 1 & 1 \end{bmatrix}$$

(d) Check for Hurwitz, $s^3 + 2s^2 + 3s + 6$

103:2nd-half 13(a)-JP

Con. 5444-LJ-10433-13.

2

2. (a) For the given tree (shown with firm lines) obtain:

1

- (i) Incidence matrix
- (ii) Fundamental cutset matrix
- (iii) Fundamental Tieset matrix.

(b) For the given network, the switch is changed from position 1 to 2 at time t = 0. 10 Find i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at $t = 0^+$. Assume that steady state is reached at switch position 1.

3. (a) Find the voltage across 10Ω resistor using mesh analysis.

[TURN OVER

10

(b) For the network shown below, find the Z-parameters.

4. (a) Find the current in 12Ω resistor using Thevenin's Theorem.

(b) For the given network, find out $\frac{V_2}{V_1}$ and $\frac{I_2}{I_1}$.

[TURN OVER

10

10

5. (a) For the network shown, below find the h-parameters.

(b) Check the positive realness of the following functions:

10

(i)
$$\frac{s^2 + 2s + 6}{s(s+3)}$$

(ii)
$$\frac{s^2 + 4}{\left(s^3 + 3s^2 + 3s + 1\right)}.$$

6. (a) Find $i_L(t)$ for t > 0. At t = 0, the switch is closed. For t < 0, the circuit is in steady 10 state.

(b) Determine Cauer forms of realization of the driving point impedance function

10

$$Z(s) = \frac{4(s^2+1)(s^2+9)}{s(s^2+4)}$$

7. (a) Find the driving point admittance Y(s) for the network shown below and plot the 10 pole-zero diagram.

(b) For the circuit shown below, the switch closes at time t = 0. The capacitor is initially 10 uncharged. Find V_c (t) for t > 0.

mk.32-2nd hlf 13-(g)

Con. 8929-13.

LJ-10258

(3 Hours)

[Total Marks: 100

N.B. (1) Question No. 1 is compulsory.

(2) Solve any three questions from the remaining questions.

5

$$L\left[\begin{array}{c} Cosh \ t \int\limits_0^t e^u Cosh \ udu \end{array}\right] = \frac{1}{2} \left[\begin{array}{c} \frac{s-2}{\left(s-1\right)^2 \left(s-3\right)} + \frac{s}{\left(s+1\right)^2 \left(s-1\right)} \end{array}\right].$$

(b) Show that the same and the

$$Z\left[C^{k} \operatorname{Cosh} h\alpha k\right] = \frac{Z\left(Z - C \operatorname{Cosh} \alpha\right)}{Z^{2} - 2CZ \operatorname{Cosh} \alpha + CZ} (k > 0).$$

(c) Show that Fourier Sine transform of $\frac{1}{\sqrt{t}}$ is $=\frac{1}{\sqrt{s}}$.

(d) Show that vectors (1, 2, 3) (3, -2, 1) and (1, -6, -5) are linearly dependent and find the relation amongst them.

2. (a) Find
$$L^{-1} \left[\frac{(s+1)e^{-5s} + 5}{s^2 + 6s + 5} \right]$$
.

6

(b) Express into product of two submatrices B and C of order 2 × 2. Find A⁻¹, B⁻¹ and (AB)⁻¹.

(c) Find Half range Cosine series of —

$$A = \begin{bmatrix} 1+ab, & a \\ b, & 1 \end{bmatrix}$$

8

and hence deduce that —

(i)
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$

 $f(x) = \begin{cases} k_x & 0 \le x \le \frac{\ell}{2} \\ k(\ell - x) & \frac{\ell}{2} \le x \le \ell \end{cases}$

(ii)
$$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots = \frac{\pi^4}{96}$$
.

3. (a) Find
$$L \left[\begin{array}{c|c} Cosh3t Sin^2 2t \\ \hline t \end{array} \right]$$
.

6

(b) Show that the matrix $A = \frac{1}{2} \begin{bmatrix} \sqrt{2} & -i\sqrt{2} & 0 \\ i\sqrt{2} & -\sqrt{2} & 0 \\ 0 & 0 & 2 \end{bmatrix}$ is unitary and hence find A⁻¹.

(c) Find the Fourier series of $f(x) = x \sin x$ in $(-\pi, \pi)$ and hence deduce that

$$\frac{\pi - 2}{4} = \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} - \frac{1}{7 \cdot 9} + \dots /.$$

TURN OVER

- 4. (a) Find $L^{-1} \left| \frac{1}{(s-4)^4 (s+3)} \right|$ using Convolution theorem. (b) Find half range Cosine series of $f(x) = (x - 1)^2$ in 0 < x < 1 and hence find
 - $\sum \frac{1}{n^2}$ and $\sum \frac{(-1)^{n+1}}{n^2}$.
 - (c) Solve completely $7x + y + z = a^2$ 4x + 5y + 7z = -a3x - 4y - 6z = 2.
- 5. (a) Evaluate $\int_0^{\infty} e^{-3t} t^2 \operatorname{erf} 2\sqrt{t} dt$ using Laplace transform.
 - Given that $L\left[\operatorname{erf}\sqrt{t}\right] = \frac{1}{s\sqrt{s+1}}$.
 - (b) Solve using Laplace transform
 - $\frac{dy}{dt} + 2y + \int_{0}^{t} y \, dt = \sin t, \ y(0) = 1.$
 - Find the ranks by reducing the matrix A to Normal form.
 - (i) $A = [a_{ij}]_{3\times3}$ where $a_{ij} = i + j$. (ii) $A = [a_{ij}]_{3\times3}$ where $a_{ij} = i/j$.
- (a) Find the complex form of Fourier series for f(x) = 2x in $(0, 2\pi)$.
- (b) Solve by Gauss-Jordan Method:— 2x - 6y + 8z = 245x + 4y - 3z = 23x + y + 2z = 16.
 - (c) Find:—
 - (i) $L^{-1} \left[log \left(s^4 + 4 \right) \right]$
 - (ii) $L^{-1} \left[\frac{1}{5} \log \left(\frac{s+3}{s+4} \right) \right]$.
- f2(x)=1 $Z[3^k \operatorname{Cosh}\alpha k], k \ge 0.$
 - Show that $f_4(x) = 5x^3 3x$ is orthogonal to $\{f_1, f_2, f_3\}$ where $f_1(x) = x$, $f_3(x) = x^2$
 - Solve by Gauss-Seidal Method performing four iterations,

$$23x + 4y - z = 32$$

 $2x + 17y + 4z = 35$
 $x + 2y + 10z = 24$

Dechanics Devicer & avants T

RT-Exam.-Oct.-13-4-61 Con. 5414-13.

(OLD COURSE)

LJ-10295

(3 Hours)

[Total Mars: 100]

N.B. :	(1)	Questions	No.	1	and	2	are	compulso	ry.
---------------	-----	-----------	-----	---	-----	---	-----	----------	-----

- (2) Out of remaining questions attempt any three questions.
- (3) In all five questions to be attempted.
- (4) Figures to the right indicate full marks.
- Design single stage R-C coupled CE audio frequency amplifier employing [20] BC147B BJT to satisfy the following requirements. $|Av| \ge 90$, $S_{ICO} \le 10$, Load resistor $R_L = 10 K\Omega$ and Output voltage Vo=2volts.
- Design single stage R-C coupled CS audio frequency amplifier employing [20] JFET BFW-11 to satisfy the following requirements. Av $| \ge 10$, $I_{DO} = 2.5$ mA RL = 100 K Ω , $V_{DD} = 20$ volts and Output peak voltage Vo = 3.5volts.
 - 3. a With the help of neat circuit diagram explain the operation of BJT shunt [10]voltage regulator and derive for its line regulation and load regulation.
 - 3. b Sketch the input output characteristic curves for a transistor in CB connection [10]and show how to obtain graphically the four parameters hib, hfb, hrb, and hob?

4. a Multiple Choice Question:

[5x2]

- A voltage of 200cos100t is applied to a half-wave rectifier with a load resistor of $5k\Omega$. The rectifier is represented by an ideal diode in series with a resistor of $1k\Omega$. The maximum value of current, d.c. component of current and r.m.s. value of current will be respectively,
 - a) 33.33 mA 10.61mA,& 16.67mA b) 22.22 mA 8.61mA,& 13.38mA
 - c) 28.33 mA 14.61mA,& 13.33mA d) 40 mA 20mA, & 25mA
- ii. The series type regulator is suitable for
 - (a) low current high voltage (b) low current low voltage
 - (c) high current low voltage (d) high current high voltage
- iii. Voltage gain of a common gate amplifier with $\mu = 15$, rd = 20 K, RL = 2 K, internal resistance of the voltage source = 2 K is (a) 0.64 (b) 6.4 (c) 0.89

- The h-parameters of a BJT are 17.
 - (a) dependent on RL (b) dependent on ICQ (c) independent of ICQ
 - (d) constant
- The relationship between input and output voltage of a common emitter ٧. amplifier is
 - (a) always unity (b) always positive (c) always negative (d) less than unity

[TURN OVER

What is the principle of providing thermal stabilization by means of different methods of transistor biasing? Explain the bias compensation techniques using a diode and thermistor or sensitor

[10]

5. a

VDD=10V
RD
VDS
VDS
RS
FIG.5a

For the circuit in Figure 5a the JFET parameters are $I_{DSS}=5$ mA, Vp=-4V. Determine the following with $I_D=2$ mA and $V_{DS}=6V$

- i) R_D ii) R_S iii) V_D (voltage between drain terminal and ground)
- iv) VS (voltage between source terminal and ground)
- ii) V_{RD} (voltage across R_D)
- The silicon transistor in the amplifier stage shown in Fig. 5.b has collector [3+3+4] resistance of $r_c = 1.5 \text{ M}\Omega$. Determine the following

- Input impedance of the amplifier
- 2. Output impedance of the amplifier
- 3. The rms load voltage of the amplifier
- Design a full wave rectifier dc supply using center tapped transformer with two diodes to give dc output voltage at 150 volts to a variable resistive load. The load current expected is 50 ± 10 mA with ripple factor not to exceed 0.07. Use LC filter

[10]

6. b

Fig.6b

Determine the small signal voltage gain of a MOSFET circuit with VGSQ = 2.12 V, VDD = 5 V, Rd = $2.5 \text{ k}\Omega$, VTN = 1 V, Kn = 0.8 mA/V2 and $\lambda = 0.02 \text{ V}^{-1}$ (body effect coefficient). Assume transistor (Fig.6b) is biased in the saturation region

7. Explain in brief

[4x5]

- i. Line & Load regulation of BJT shunt regulator
- ii. Transfer characteristic of JFET
- iii. How triggering of an SCR can be controlled by the gate signal applied
- iv. How do we bias JFET against device variation

DREC DATA SHEET

Transistor fune	Pamax	Icmax 0 25°C	V _{CE} (ml)	Veso	V CEO	V CEA O	VCEX	Veco	T max	D.C.	CULTERI	nt gain		Small	Signal	4	Vee		0 °	Derate above
	Waits		d.c.	d.c.		volts d.c.	d.c.	d.c.	ر ر ر	min	typ.	max.		min.	typ.	max.			<u>.</u>	J ./.₩
2N 3055	115.5	15.0	1.1	100	09	70	96	7	200	20	50	70	_	15	50	120			1.5	0.7
ECN 055	20.0	5.0	0.1	9	20	55	90	√	200	25	20	100	_	25	75	125	3 1.5		3.5	0.4
ECN 149	30.0	4.0	1.0	20	40	1	!	œ	150	30	50	110	_	33	90	115		٥)	4-0	0-3
ECN 100	5.0	0.7	9.0	70	9	65	1	9	200	20	90	280	•	50	90	28(•	35	0.05
BC147A	0.25	0.1	0.25	20	45	20	1.	9	125	115	180	220		25	220	260	0.0	•	1	1
2N 525(PNP)	0.225	0.5	0.25	85	30	1	1	1	100	35	-	65		1	45	ı	}		1	
BC147B	0.25	0.1	0.25	20	45	20		9	125	200	290	450		240	330	200	0.0	•		1
Transistor type	hie	hoe	hre		θja															
BC 147A	2.7 K D	18µ 83	1.5 × 1	10	0-4°C/mw	BFW	11—JFET	T MUTUAL		CHARACTERISTICS	USTICS									
	×	25μ Ω		10	!	-VGS v	volts	0.0	0.5	0.4 0	0.6	3 1.0	1.2	1.6	2.0	2.4	2.5 3.0	0 3.5	5 4.0	
7 7		⊣	×	0 <u>t</u>	0.4°C/m₩	IDS max.	x. mA	10	0.6	8.3	9.6	8 6.1	5.4	4.2	3.1	2.2	2.0 1-1	1 0.5	2 0.0	1
ECN 100	250 S2		! [los typ.	, mA	7.0	0-9	5.4 4	.6 4.0	3.3	2.7	1.7	8-0	0.5	0-0 0-0	0-0	0.0	
ECN 055						IDS min.	n. mA	4.0	3.0	2.2	.6 1.0	0.5	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0-0	T <u> </u>
2N 3055	25 Ω	1																		1
N-Channel JFET	L .	-		-																
Trne		Vos max.	V _{DG} m	H	V _{cs} max.	P, max.	T	max.	loss		8 me		-V, Volts	lıs	'A		<u> </u>		9	B,
		Volts	Volts		Volts	@25°C				ا'ت	(typical)					ap	above 25°C			

Type		Volts	Volts	Volts	@25°C	i max.	sso,	8me (typical)	1)	-v p v Oits	, d	above	ove 25°C		jα
2N3822		20	20	20	300 mW	175°C	2 mA	Ωπ 000ε	Ωπ	9	50 KΩ	:	2 mW/°C	0-59°C/mW	/m.W
BFW 11 (typical)		30	30	30	300 mW	200°C	7 mA	2 π 0095	Ωπ	2.5	50 KΩ			0.59° C/mW	/m W
										•					
UJT type	P, max.	Is max. @25°C	peak pulse current max.	ent max.	V BRE Volts max.	Versi	T, max	min.	max.	RasKO min. 1yp.	Мах.	I, max.	Ä	I, min. mA	E &
2N2646	300mW	50mA	2Amp.	 	30	35	125°C	0.56	0.75	4.7 7.0	9.1		5.0	4.0	-2.0

[6[12]]3

2nd Half-2013-mina-(d)-86

Con. 6500-13.

Numerical Technique

LJ - 10385

(3 Hours)

[Total Marks: 100

- N. B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any four out of remaining six questions.
 - (3) Make suitable assumptions if required and justify the same.
- 1. (a) Volume of a certain solid V is calculated using formula $V = 64 \frac{xy^4}{z^2}$ where x, y & z denote three dimensions. If maximum possible errors in the x, y & z is limited to plus minus 0.001. Estimate the maximum probable error in the calculation of volume if the normal dimension x, y & z are equal to unity.
 - (b) Define the operators $\Delta, \nabla, \delta, \mu \& E$. Prove that

•

- i) $2\mu\delta = \Delta + \nabla$
- ii) $E = 1 + \Delta$
- (c) Using Picard's method solve

5

 $\frac{dy}{dx} = 1 + xy \quad \text{such that } y = 0 \text{ when } x = 0.$

(d) Derive the equation for Regula – falsi method using geometrical interpretation.

5

2. (a) List the bracketing methods and open methods and find the real root of the equation $x \sin x + \cos x = 0$ using Newton Raphson method correct to three decimal places.

10

(b) Solve the following equations by Gauss - Seidel method.

$$27x + 6y - z = 85$$
, $6x + 15y + 2z = 72$, $x + y + 54z = 110$.

10

3. (a) From the following table find the number of students who obtained marks less than 45.

Marks	30-40	40-50	50-60	60-70
No. of students	31	42	51	35

(b) Using Newton's divided difference formula, find the value of f(9) from the following table.

I	laoie.		<u> </u>			
	X	5	7	11	13	17
	f(x)	150	392	1452	2366	5202

4. (a) Write a program for Lagrange's interpolation method and using this formula, find the value of y when x = 10 from the following table.

10

10

 x
 5
 6
 9
 11

 y
 12
 13
 14
 16

(b) Fit a second degree parabola to the following data:

X	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y	1.1	1.3	1.6	2.0	2.7	3.4	4.1

[TURN OVER

- 5. (a) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using Trapezoidal, Simpson's $\frac{1}{3}^{rd}$ and Simpson's $\frac{3}{8}^{th}$ rule
 - Solve $\frac{dy}{dx} = x + y$ with $x_0 = 0$, $y_0 = 1$ by Euler's modified formula find the value of y when x = 0.5 taking h = 0.25.
- 6. (a) Solve $\frac{dy}{dx} = x^2 + y$ with initial conditions y(1) = 2 and find y at x = 1.2, x = 1.4 by Runge Kutta Method of Fourth Order taking h = 0.2.
 - (b) Solve the following set of equations using Gauss Elimination method. $2x + y + z = 10, \quad 3x + 2y + 3z = 18, \quad x + 4y + 9z = 16.$
- 7. (a) Explain the propagation of errors.
 - Using Adams Bashforth method, obtain the solution of $\frac{dy}{dx} = x y^2$ at y(0.8), given values

X	0	0.2	0.4	0.6
<i>y</i>	0	0.0200	0.0795	0.1762

(c) Write a short note on Golden section search.