SE/ EXTC/III CREW APP. Maths-III 24/11/12

D: scan Oct.12 294 Con. 7340-12.

KR-3098

(3 Hours)

[Total Marks: 100

N.B. (1) Question No. 1 is compulsory.

(2) Attempt any four out of the remaining six questions.

(3) Non-programmable calculator are allowed.

1. (a)
$$A = \frac{1}{7} \begin{bmatrix} 2 & 6 & 3 \\ 6 & -3 & 2 \\ 3 & 2 & -6 \end{bmatrix}$$

5

Show that -

(i) |A| = 1

(ii) .adj A = A'

(b) Show that the Fourier cosine transform of-

$$f(x) = \frac{1}{\sqrt{x}} \text{ is } \frac{1}{\sqrt{s}}$$

(c) Show that L⁻¹ $\tan^{-1} \left(\frac{a}{s}\right) = \frac{\sin(a^{t})}{t}$

(d) Show that $\int_{0}^{1} e^{-t} \sin(\frac{1}{2}) \cdot \sinh(\frac{\sqrt{3}t}{2}) dt = \frac{\sqrt{3}}{2}$

(a) If z is any non zero complex number show that-

6

 $A = \frac{1}{\sqrt{2}|z|} \begin{bmatrix} z & -\overline{z} \\ z & \overline{z} \end{bmatrix}$ is a unitary matrix.

(b) Find the Fourier series expansion of $f(x) = x^2$ in [0, 2π]

(c) Show that $\int_{1}^{\infty} \frac{\sin 2t + \sin 3t}{te^{t}} dt = \frac{3\pi}{4}$

(a) Find the half range sine series for $f(x) = \pi x - x^2$ in $[0, \pi]$, hence find $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^6}$.

(b) Show that L (cos at cos h at) = $\frac{s^3}{s^4 + 4a^4}$

6

(c) If a, b, c are distinct real numbers such that $a+b+c\neq 0$. Show that the vectors (a,b,c), (b, c, a) and (c, a, b) are linearly independent.

6

6

8

6

4. (a) Find the Fourier series expansion of -

$$f(x) = \begin{cases} x, & -\pi < x < 0 \\ 0, & 0 < x < \frac{\pi}{2} \\ x - \frac{\pi}{2}, & \frac{\pi}{2} < x, < \pi \end{cases}$$

(b) Find all the possible ranks of the matrix

 $A = \begin{bmatrix} k & -3 & -3 \\ -3 & k & -3 \\ -3 & -3 & k \end{bmatrix} \quad \text{where k is any real number.}$

- (c) Find (i) $L^{-1} = \frac{se^{-\pi s}}{s^2 + 3s + 2}$; (ii) L [t. H(t 4) + $t^2 = \delta(t 4)$]
- 5. (a) Solve the system of equation using the Gauss-Seidel method: 3x + 4y + 6z = 6 2x + 5y + 4z = 11 2x + y + z = 5
 - (b) Find $L^{-1} \frac{s}{(s^2+2)^2}$ using the convolution theorem.
 - (c) Show that $z [\cos (\alpha k)] = \frac{z^2 z \cos \alpha}{z^2 2(\cos \alpha)z + 1}$.
- 6. (a) Find L f(t) where f(t) = cost, $0 < t < \pi$ sin $t \ge \pi$.

 using the Heaviside unit step function.
 - (b) Find $z^{-1} \frac{1}{(z-2)(z-3)}$ for 2 < |z| < 3 using residues.
 - (c) Express the matrix $A = \begin{bmatrix} \cos\alpha & 0 \sin\alpha \\ (\sin\alpha)(\sin\beta) & \cos\beta & -(\sin\beta)(\cos\alpha) \\ -(\cos\beta)(\sin\alpha) & \sin\beta & (\cos\alpha)(\cos\beta) \end{bmatrix}$ as a product of two orthogonal matrices.
- 7. (a) Solve the DE $y + \int_0^t y dt = 1 e^{-t}$ using laplace transforms.
 - (b) If $0 \le x \le \pi$ show that—

$$x^2 = \frac{2}{\pi} \left[\left(\frac{\pi^2}{1} - \frac{4}{1^3} \right) \sin x - \left(\frac{\pi^2}{2} \right) \sin 2x + \left(\frac{\pi^2}{3} - \frac{4}{3^3} \right) \sin 3x + \dots \right]$$

(c) Show that $\{\cos n x\}_{n \ge 1}$ is an orthogonal family of functions in $[-\pi, \pi]$. Also find the corresponding orthonormal set.

S-E-SEMILL (EXTL) Sub:- EDC-I

Mry-Dec 2012

Con. 9605–12.	(3 Hours)	KR-3203 [Total Marks : 100
(2) Attempt (3) In all fiv	n No. 1 and 2 are compulsory. any three questions out of remaining questice e questions to be attempted. to the right indicate full marks.	ons.
voltage divider big	y voltage V_{CC} . Collector resistor RC, Emitsing resistor R1 & R2 of a single stage RC couput voltage of 3V at $5k\Omega$ load, $Av \ge 100$ a	oupled CE audio
frequency voltage i. Upper limi ii. Upper limi iii. Lower limi iv. Experimen	wing question related to design of single amplifier t and lower limit on choice of power supply v t on the choice of collector resistor RC it on selection of emitter resistor RE tally how will you determine input impedance of CE without measuring input and output cu	voltage VCC [2] [2] [2] [2] [4]
employing FET to peak output voltage	age RC coupled common source (CS) type BFW11 typical to provide a voltage gaine of Vo = 4.5 V, load resistor of $120 k\Omega$, suppose to provide IDQ = 3 mA.	in of Av ≥ 10 at
2. b. For the above desiroltage gain, inpuvoltage of 20Vpp.	igned circuit with source resistor 'RS' unbyp it impedance, output impedance and output i	assed, determine [10] voltage for input
diodes to give de	e rectifier dc supply using center tapped trans output voltage at 150 volts to a variable re- ited is 50 ± 10 mA with ripple factor not to 6	sistive load. The
3. b. ΔVin	R + VBE	ΔV ₀
Figure A	D 'Avz	· .

Explain operation of the circuit shown in Figure A with detailed function of resistor 'R'. Zener diode 'D', and BJT 'Q' in above circuit

[10]

the same data

i.		oint on d.c. load line of an FET amplifier is at	[2]
	-a) Saturation point	b) Cut-off point	
•	c) Mid-point	d) None of these	
ii.	When transistors are used in digital	circuits they usually operate in the:	[2]
	a) Active region	b) Break down region	
	c) Saturation region	d) Saturation & cut-off region	
iii.	When an input delta of 2 V production current delta?	tes a transconductance of 1.5 ms, what is the	[2]
•	a) 666 mA -	b) 3 mA	
	c) 0.75 mA	d) 0.5 mA	
iv.	the dc operating point against varia	er of a common emitter amplifier stabilizes	[2]
•	a) Only the temperature	b) Only the β of the transistor	
	c) Both temperature and β	d) None of the above	-
٧.	A voltage regulator has a no-load	output of 18 V and a full-load output of 17.3	[2]
•	V. The percent load regulation is		
	a) 0.25 % b) 96.1 %		
	c) 4.05 % d) 1.04 %		
4. b.	Explain the following (Any two):		[5x2]
	i. Graphical determination of	FET parameters	
	ii. Features of IGBT	·	
	iii. BJT as a switch .		•
	iv. Power MOSFET	•	
5. a.	Discuss, using the concept of a characteristics, how a simple covarying signal	load line superimposed on the transistor mmon emitter circuit can amplify a time	[10]
	, • •	ined from certain JFET data sheet: Vosorr =	[10]

- 8 V and I_{DSS} = 5 mA. Determine the values of I_D, for each value of V_{GS} ranging from 0 V to -8 Vin 1 V steps. Plot the transfer characteristic curve for

- 6. a. For the network shown in Figure B, determine the following with |VBE| on |VBE| on |VBE| on |VBE| on |VBE| or |VBE|
 - i. Ico and Igo
 - ii. Input& Output impedance
 - iii. Voltage gain
 - iv. Current gain
 - v. List disadvantages of circuit shown

6. b. Determine the small signal voltage gain of a MOSFET circuit with VGSQ = 2.12 V, VDD = 5 V, Rd = 2.5 k Ω , $V_{TN} = 1$ V, Kn = 0.8 mA/V² and $\lambda = 0.02$ V⁻¹ (body effect coefficient). Assume transistor (Figure C) is biased in the saturation region.

- 7. Explain in brief and sketch experimental setup to determine
 - i. Output characteristic of CE BJT voltage amplifier
 - ii. Line regulation of BJT shunt regulator
 - iii. Forward characteristic of SCR
 - iv. Transfer characteristic of JFET
 - v. UJT characteristic

[4x5]

[10]

DBEC DATA SHRET

			State of the	<u> </u>									_ :							-2112		
Transistor type		Pdmaz g-25°C Watts •	@ 25°C	y 640 volts d.c.	V _{cre} velts L.c.	(Zas) volts d	y cur (Sur) t,volis d.c.	v ctx rolu d.e.	V _{age} volts d.c.	T, mil	D.C		urrent typ.	geli mat		viell ür.	Signal	k,	ir.	V _{ad} max.	o, Chv	Derdi abev 25°C W/°C
	·								4.6.			· 	٠٫٫٠٠			·	7.79.			·		
2N3055"	:	113-3	15-0	14.	100	60	70	96	9	200	20)	50	70	' i 1	ĮŞ	50	13	20	1.8	1.5	0.7
ECN055		50-0	5-0	1.0	60	30	35	60	-5	200	7.5	· /	SO	100	√ ģ	25	75		25	1-5	3.5	0-4
ECN149	٠.	30-0	4-0	1.0	50	40		_	8	150	30)	50	110	. 3	33	60	1	15	1.2	4.0	0-1
ECN100	1	50	6.7	0.6	70	60	65	: <u></u> :	6	200	50	j	90	280		ŚÒ	.90	2	80	0.9	35	
BC147A	•	0-25	0-1	0-25	50	45	.30		6	125	115	ï	180	220	ľ	25	220	2	60	0.9	_	_
2NSZS(PNP)		0-225	0.5	\$0.25	85	30	نبد		· .—	100	3.	i 1	·	65		_	45	- }.				
BC1478	2.0	0.25	0.1	0.25	50	45	50	_	6	125	200)	290	450	. 2	40	330	5	00	0-9		+-
1.36%														••••								
Transistor type	. (rie .	hoe		te	ø)a	BFW	· 11— <i>JF</i>	ET XUT	UAL CH	ARACT	erist	YCS					, in				· .
BC 147A	2.7	ΚΩ	184 0	1.5	x 10-4	0-4°C/mv	-Vcs	volts	0-0	0.2	0-4	0.6	0-8	1-0	1.2	1-6	2-0	2-4	2.5	3-0	3.5	4-0
2N S2S (PNP)		KΩ	25µ t		k 10-1	V- Chill		nax. mA	10	9.0	8-3	7-6	6.8	6-1	:34	4.2	3-1	2.2	20	1-1	0.5	0-0
BC 1478			30µ t		× 10-	D4°C/mv		yp. mA	7.0		-	4-6	4-0	3.3	2.7	17	0-8	0.2		+	0-0	0-0

N-Channel IFFT

Тург	V _{as} mar. Volis	V _{oo} max. Volts.	V _{es} max. Volts	P ₂ max. @25°C	T, mex.	I _{MG}		-V, Yelu		Deraie above 25°C	٠٠,
2//3822	50	50	50	300 mW	175°C	2 mA	·3000 μΩ	- 6	SO KO	2 mW/C	0-59°C/mW
BFW 11 (typical)	30	30	30	300 mW	200°C	7 mA	5000 μΩ	2.5	Số KΩ		0-59° C/mW
	Ţ		<i>;</i>					;			

UJT type	P, mar. @25°C	1, max. @25°C	peut puise current max.	V sis Volis max	Y _{ssei} Vales	T _j max	min.	T) max.	R _H Min.	KO typ.	Has.	. l, inàx.	pi in	is. 15A	Ι _{ρο} ,
2N2645	300mW	. SOm A	2Amp.	30	35	125°C	0-56	0.75	4-7	7.0	9-1	* :	5-0	4-0	-2-0

p3-upq-Con-12--230

5.E. Sem TT Rev. NID-20n

Con. 10038-12.

KR-3335

(3 Hours)

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

(2) Out of remaining six questions solve any four.

(3) Each question carries 20 marks. Equal marks for the sub-questions.

(4) Assume suitable data if required.

- 1. (a) Perform the following operations:
 - (i) 1010-1 x 101-1

(ii) $(AA)_{H} \times (55)_{H}$

(iii) Convert (77)₈ into Decimal number system

(iv) Find (22-31)₁₀ using 2's complement number system

(v) Convert (1110101100000111)2 into Hexa-decimal number system

- Draw state diagram of sequence detector to detect a non-overlapping sequence 10001. Write its state table. Find the equivalent states if they are present.
- Que (2) (A) Design lockout free Mod 13 up synchronous counter using JKMS flip flops.

(B) Do the following conversions of flip flops;

(I) JKMS to T (II) D to T.

Que (3) (A) Draw CMOS inverter circuit, discuss its operation and draw its transfer characteristic.

(B) For the following function implement the SOP and POS circuit.

 $F(A,B,C,D) = \sum m(2,3,5,7) + \sum d(6,13,14,15)$

Que (4) (A) For the following function find the reduced Boolean equation using Quine McClusky method:

 $F(A,B,C,D) = \sum m(1,3,4,6,9,11,12) + \sum d(5,8,15)$

- (B) Draw JKMS flip flop and explain its operation.
- Que (5) (A) Design full adder using decoder with active high output.

(B) Explain following characteristics of logic families;

(I) Propagation delay (II) Noise margin (III) Current parameters

(TV) Temperature range (V) Fan out.

Que (6) (A) Design a PROM which will convert BCD numbers into Gray code.

(B) Use 5 Input, 3 Product, 4 Output PAL to realize following 3 functions.

 $F1(A,B,C,D) = \sum m(2,3,4,8,9,13,14)$

 $F2(A,B,C,D) = \overline{\sum} m(2,3,5,8,9,14,15)$

 $F3(A,B,C,D) = \sum_{m} m(2,3,4,8,9,14,15).$

- Que (7) Write short notes on any four of the following;
 - (I) FPGA, (II) Asynchronous counters, (III) ECL logic family
 - (IV) Weighted and non-weighted codes, (V) ROM.

S.E. EXTC Sem III (Rev) 11/Dec - 2012 S46- EI.

	2nd half		. , ,											
Cc	n. 10	287	-12.									KF	R-3437	•
							(3 Ho	ours)			[Tota	al Mari	ks : 100)
N	.B. :	(2)	Solve	e any	No. 1 is four que litable o	estions	ulsory s from	/. the rem	naining	questi	ons.			
1.		(a) (b) (c) (d) (e)	Class Expla True Comp On w	sify tra ain the RMS pare d hat pi	estions ansduce signific meters lifferent inciple ntages	er. cance is alwa types does a	ays sp of AD a digita	ecified Cs. al frequ	by cres	st facto	or. Just perate	ify.		20
2.	(b)	mea Wha	asurer at is th	ment r	ing temp ange ap ic princip	oplicat	ions F	RTD, the	ermoco	uple a	nd thei	rmistor	S.	
3.	(a) (b)	Wha Expl	it is the lain th	e role 1e prii	of a time	base f opera	genera ation o	ator ? W of dual	/hat are slope [the tin	ne base	e require	ements.	10 10
1.	(a) i	Exp! Expl	ain th ain m	e sig	nificance	e of 3	$3\frac{1}{2}$ ardused	nd 4 <u>1</u> for R. F	digit dis	splays etry sy	s. estem.			10 10
5.					des of o applica	•					-			10 10
3 .	d	displ	acem	ent m	lacemer easuren ormanc	nent.						ers use	d for	10 10
•	(a) E	Expla	ain pu	ilse c	ode mod t types d	dulatio	n tech	nni q ue.				counter	rs.	10 10 10

1 SUB. - EN

D Scan Pra 1 71 Con. 11036-12.

KR-3659

20

(3 Hours)

[Total Marks: 100

N.B. (1) Question No. 1 is compulsory.

- (2) Attempt any four questions from the remaining six questions.
- (3) All questions carry equal marks.
- 1. Attempt any four :-

(a) For maximum power transfer find the value of Z_L if

- (i) Z_L is impedance
- (ii) Z_L^- is pure resistance.

Find initial value of,

$$f(t) = 20 - 10t - e^{-25t}$$

verify using initial value theorem.

In network given below, initial value of I_L = 4A and V_C = 100V. Find I_C (0+).

(d) Currents I₁ and I₂ entering at Port 1 and Port 2 respectively of two port network are given by following equation.

$$I_1 = 0.5 V_1 - 0.2 V_2$$

$$I_2 = -0.2 V_1 + V_2$$

 $I_1 = 0.5 \text{ V}_1 - 0.2 \text{ V}_2$ $I_2 = -0.2 \text{ V}_1 + \text{V}_2$ Obtain T and $\pi(\text{pi})$ representation.

For network shown, find $\frac{V_c}{V}$ and draw pole-zero plot. (e)

[TURN OVER

2. (a) Using mesh analysis find the power supplied by dependent voltage source.

(b) Find current supplied by source.

10

3. (a) Write B and Q matrix for the Graph shown.

(b) Draw Bode Plot for the function G(s). Find gain margin, phase margin and 10 comment on stability.

G(s) =
$$\frac{2(s+0.25)}{s^2(s+1)(s+0.5)}$$

4. (a) For the network below, switch is opened at t = 0 with initial conditions shown. Find 10 v_1 , $\frac{dv_1}{dt}$, $\frac{dv_2}{dt}$ at time 0+

(b) Find Y parameter using interconnection.

10

[TURN OVER

5. (a) In the network below, key is closed at t=0, Find $i_1(0^+)$, $i_2(0^+)$ and $i_3(0^+)$.

10

10

3

- (b) Find i(t). $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$ $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$ $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$ $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$ $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$ $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$ $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$ $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$ $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$ $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$ $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$ $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$ $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$ $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$ $\begin{array}{c}
 t = 0 \\
 t = 0
 \end{array}$
- 6. (a) The circuit attains steady state with switch at position (a) and is moved to position 10
 (b) at t = 0. Find v(t) for t ≥ 0.

Con. 11036- KR-3659-12.

(a) Realize following function in Foster II form

$$Z(s) = \frac{(s^2+1)(s^2+3)}{s(s^2+2)(s^2+4)}$$

(b) Check following polynomials for Hurtwitz :—
 (i) p(s) = s⁴ + 4s² + 8
 (ii) p(s) = s⁴ + s³ + 5s² + 3s + 4.

(i)
$$p(s) = s^4 + 4s^2 + 8$$

(ii)
$$P(s) = s^4 + s^3 + 5s^2 + 3s + 4$$

10

10