Con. 6397-13.

(3 Hours)

[Total Marks: 100

- **N.B.** (1) Question No. 1 is **compulsory**.
 - (2) Solve any four questions from Question Nos. 2 to 7.
- 1. (a) Find Laplase transform of $t\sqrt{1-\sin t}$.

20

- (b) Find the value of z for which the function is not analytic $z = \sin hu \cos v + i \cos hu \sin v$.
- (c) Obtain complex form of Fourier series for $f(x) = e^{ax}$ in (-l, l).
- (d) Find the matrix A, if adj $A = \begin{bmatrix} -2 & 1 & 3 \\ -2 & -3 & 11 \\ 2 & 1 & -5 \end{bmatrix}$.
- 2. (a) Reduce the following matrix to Normal form and find its rank:

6

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 4 & 6 & 8 & 10 \\ 6 & 12 & 18 & 24 \end{bmatrix}.$$

(b) Find an analytic function whose imaginary part is e^{-x} (y sin y + x cos y).

6

(c) Expand $f(x) = x \sin x$ in the interval $0 \le x \le 2 \pi$.

8

6

- 3. (a) Consider the transformation w = (1 + i) z + (2 i) and determine the region in the w plane into which the rectangular region bounded by x = 0, y = 0, x = 1, y = 2 in the z plane is mapped under this transformation.
 - (b) Prove that the matrix is unitary hence find A⁻¹

6

$$A = \frac{1}{2} \begin{bmatrix} \sqrt{2} & -i\sqrt{2} & 0 \\ i\sqrt{2} & -\sqrt{2} & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

(c) Find the inverse Laplace transformation:

8

(i)
$$f(s) = \frac{1}{s^2 (s+a)^2}$$

(ii)
$$f(s) = \frac{11s^2 - 2s + 5}{2s^3 - 3s^2 - 3s + 2}$$
.

4. (a) Find Laplace transform of $f(t) = a \sin pt$

6

$$0 < t < \frac{\pi}{p}$$
, $f(t) = 0$, $\frac{\pi}{p} < t < \frac{2\pi}{p}$ and $f(t) = f\left(t + \frac{2\pi}{p}\right)$.

(b) Find the Bilinear transformation which maps the points z = 1, i, -1 onto the points w = i, 0, -i.

8

6

8

(c) Obtain the half range sine series for f(x):

when
$$f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$$

hence find the sum of $\sum_{2n-1}^{\infty} \frac{1}{n^4}$.

5. (a) Obtain the Fourier expansion of —

$$f(x) = \begin{cases} \cos x, & -\pi < x < 0 \\ -\cos x, & 0 < x < \pi \end{cases} \text{ and }$$
$$f(x) = f(x + 2\pi)$$

- (b) Show that $u = y^3 3x^2y$ is a harmonic function. Find its harmonic conjugate and the corresponding analytic function.
- (c) For what value of λ the equations $3x 2y + \lambda z = 1$, 2x + y + z = 2, $x + 2y \lambda z = -1$ will have no unique solution. Will the equations have any solution for this value of λ ?
- 6. (a) If $A = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2 \end{bmatrix}$ find the eign values of $A^3 + 5A + 8I$.
 - (b) Show that the set of functions $\cos x$, $\cos 2x$, $\cos 3x$. . . is a set of orthogonal functions over $(-\pi, \pi)$. Hence construct a set of orthonormal functions.
 - (c) Use of Laplace transform to solve :-

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dt} + 8y = 1, y(0) = 0, y'(0) = 1$$
.

7. (a) Define the fixed points of Bilinear transformation and hence find the same for 6

$$w = \frac{2z - 2 + iz}{i + z}.$$

- (b) Find the inverse Laplace transform of $f(s) = \frac{(s+1) e^{-S}}{s^2 + s + 1}$.
- (c) Find the characteristic equation of the matrix A given below and hence find the matrix represented by, $A^6 6A^5 + 9A^4 + 4A^3 124A^2 + 2A I$.

where
$$A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$$
.