(3 Hours)

[Total Marks: 100

- **N.B.**: (1) Question No. 1 is compulsory.
 - (2) Solve any four questions out of remaining six questions.
 - (3) Figures to the right indicate full marks.
 - (4) Make suitable assumptions where necessary.
- 1. Attempt any four of the following:

20

- (a) What is the need of modulation in communication?
- (b) What is companding?
- (c) Explain bandwidth efficiency and power efficiency of AM, FM and PM.
- (d) Discuss the importance of Eucledian distance in ASK, FSK and PSK methods.
- (e) Explain FDM.
- 2. (a) A modulating signal $10 \sin (2\pi \times 10^3 t)$ is used to modulate a carrier signal $20 \sin (2\pi \times 10^4 t)$. Find the modulation index, percentage modulation, frequencies of the sideband components and their amplitudes. What is the BW of the modulated signal? Draw the spectrum of the AM wave.
 - (b) Explain in detail superheterodyne AM receiver with the waveforms at various points. 10
 - 10
- (a) State and prove sampling theorem for low pass signal.
 (b) For the bit sequence b(t) = 1 1 0 1 0 0 1 0. Draw the following lien coding waveforms.
 - orms. 10

- (i) NRZ L
- (ii) AMI
- (iii) Manchester
- (iv) URZ
- (v) Polar RZ.
- 4. (a) Explain QPSK transmitter and receiver. Draw signal sapce representation.

10

(b) Compare PCM, DM, and ADM.

10 10

- 5. (a) Explain the following:-
 - (i) Information
 - (ii) Information Rate
 - (iii) Entropy
 - (iv) Channel capacity.

An analog signal is bandlimited to 4 kHz. It is sampled at the Nyquist rate and the samples are quantized into 4 levels. The quantization levels Q_1 , Q_2 , Q_3 and

 Q_4 are independent messages and have the probabilities $P_1 = P_2 = \frac{1}{8}$, $P_3 = P_4 = \frac{3}{8}$.

Find the information rate of the source.

- (b) Explain the concept of image frequency and double spotting.
- 6. (a) For a (7, 4) linear block code, the generator matrix is given by 10

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- (i) Find all code vectors
- (ii) Explain the procedure for error correction using syndrome vector. Give example.
- (b) Compare ASK, FSK and PSK techniques.

10

- 7. Write short notes on any four :-
 - (a) Shannon's Theorem
 - (b) Diode Detector
 - (c) Thermal Noise
 - (d) Pre-emphasis and De-emphasis
 - (e) Ring Modulator.

10

20