5

5

5

5

10

10

10

(3 Hours)

[Total Marks: 100

- **N. B.:** (1) Question No. 1 is **compulsory**.
 - (2) Attempt any **four** out of remaining **six** questions.
 - (3) Make suitable assumptions if required and justify the same.
- 1. (a) Volume of a certain solid V is calculated using formula $V = 64 \frac{xy^4}{z^2}$ where x, y & z denote three dimensions. If maximum possible errors in the x, y & z is limited to plus minus 0.001. Estimate the maximum probable error in the calculation of volume if the normal dimension x, y & z are equal to unity.
 - (b) Define the operators $\Delta, \nabla, \delta, \mu \& E$. Prove that
 - i) $2\mu\delta = \Delta + \nabla$
- ii) $E = 1 + \Delta$
- (c) Using Picard's method solve

 $\frac{dy}{dx} = 1 + xy \quad \text{such that } y = 0 \text{ when } x = 0.$

- (d) Derive the equation for Regula falsi method using geometrical interpretation.
- 2. (a) List the bracketing methods and open methods and find the real root of the equation $x \sin x + \cos x = 0$ using Newton Raphson method correct to three decimal places.
 - (b) Solve the following equations by Gauss Seidel method. 27x + 6y z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110.
- 3. (a) From the following table find the number of students who obtained marks less than 45.

Marks	30-40	40-50	50-60	60-70
No. of students	31	42	51	35

(b) Using Newton's divided difference formula, find the value of **f(9)** from the following table.

X	5	7	11	13	17
f(x)	150	392	1452	2366	5202

4. (a) Write a program for Lagrange's interpolation method and using this formula, find the value of y when x = 10 from the following table.

,				
X	5	6	9	11
y	12	13	14	16

(b) Fit a second degree parabola to the following data:

					,		
X	1.0	1.5	2.0	2.5	3.0	3.5	4.0
v					2.7		

[TURN OVER

- 5. (a) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using Trapezoidal, Simpson's $\frac{1}{3}^{rd}$ and Simpson's $\frac{3}{8}^{th}$ rule.
 - Solve $\frac{dy}{dx} = x + y$ with $x_0 = 0$, $y_0 = 1$ by Euler's modified formula find the value of y when x = 0.5 taking h = 0.25.

10

5

- 6. (a) Solve $\frac{dy}{dx} = x^2 + y$ with initial conditions y(1) = 2 and find y at x = 1.2, x = 1.4 by Runge Kutta Method of Fourth Order taking h = 0.2.
 - (b) Solve the following set of equations using Gauss Elimination method. $2x + y + z = 10, \quad 3x + 2y + 3z = 18, \quad x + 4y + 9z = 16.$
- 7. (a) Explain the propagation of errors.
 - Using Adams Bashforth method, obtain the solution of $\frac{dy}{dx} = x y^2$ at y(0.8), given values

X	0 .	0.2	0.4	0.6
\mathcal{Y}	0	0.0200	0.0795	0.1762

(c) Write a short note on Golden section search.