Con. 6754-13.

(3 Hours)

[Total Marks:100

N.B.:(1) Question No. 1 is compulsory.

- (2) Solve any **four** out of remaining **six** questions.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary.
- 1. Solve any four:-

20

- (a) Two point charges, $Q_1 = 1.6 \mu c$ and $Q_2 = -2.2 \mu c$ are located at $P_1(0.5m, -0.8 m, 1.2 m)$ and $P_2(-0.7 m, 1.5 m, 0.7 m)$ respectively, in a medium of relative permittivity 2.6 calculate the electric force on Q_1 .
- (b) The current density over the cross-section of a conductor of radius 5 mm is $j = (4 \times 10^6) e^{-200r} \overline{az} A/m^2$ in cylindrical coordinates. Calculate current carried by the conductor.
- (c) Derive integral and differential forms of Faraday's Law.
- (d) Prove that the electric flux passing through any closed surface is equal to the total charge enclosed by that surface.
- (e) Define electric dipole and derive expression for electrical potential due to electric dipole.
- (f) Explain Bio+- savart law in magnetic field.
- 2. (a) Two oppositely charged lines are parallel to the Z axis of cylindrical co-ordinates. The line with positive charge is at $P_1(0.5 \text{ m}, 60^\circ)$ and the line with negative charge is at $P_2(0.8 \text{ m}, 150^\circ)$. Find the field intensity at $P_2(0.5 \text{ m}, 90^\circ)$ in free space. The charge density in each line is 0.075 pc/m.
 - (b) Evaluate both sides of divergence theorem in the cylindrical region defined by r = 3.0 m and 1.0 m $\le z \le 6.0$ m if electric flux density in the region.

 $D = ae^{-r} \frac{-}{ar} + \frac{b}{z} \frac{-}{az}$ where a and b are constants.

- 3. (a) Derive the expression for magnetic field intensity due to a finite wire carring a 10 current I.
 - (b) The common boundary surface of two dielectric regions is on the x-y plane. the relative mermittivity of region 1 (z > 0) are 1.1 and 6.0 respectively. The field intensity at the boundary in region 1 is $\overline{E_1} = 0.5 \, \overline{ax} 1.2 \, \overline{ay} + 1.5 \, \overline{az} \, v/m$. Calculate the magnitudes of field intensities on two sides of the boundary and the angles which they make with normal to the interface.

[TURN OVER

- 4. (a) Two parallel conducting disks are separated by a distance 5 mm at Z = 0 and Z = 5 mm. If V = 0 at Z = 0 and V = 100 at Z = 5 mm. Find charge densities on the disks.
 - (b) Find work done moving point charge $Q = 0.5 \mu c$ from origin to $\left(2, \frac{\pi}{4}, \frac{\pi}{2}\right)$ in field 10

$$\overline{E} = 5e^{-\frac{r}{4}} \frac{10}{ar} + \frac{10}{r \sin \theta} \frac{1}{a\theta} v/m$$

- 5. (a) Two identical circular loops of 1m radius are situated side by side on a common axis. The distance between the loops is 1m. If both loops carry a current of 1A in the same direction. Find \overline{B} (i) at the centre of one loop (ii) at a point midway between the loops on their common axis.
 - (b) Given that $\overline{E} = \text{Em} \sin (\text{at Bz}) \overline{\text{ay}}$ in free space find \overline{D} , \overline{B} and \overline{H} .
- 6. (a) Starting from Maxwell equations derive equation of electromagnetic wave in 10 dielectric medium.
 - (b) A 9375 MHz uniform plane wave is propagating in a medium having relative permittivity Er = 2.56. If magnitude of $\overline{E} = 20$ v/m and the material assumed to be lossless. Find -
 - (i) the phase constant
 - (ii) the wavelength
 - (iii) velocity of propagation
 - (iv) the intrinsic impedance
 - (v) The propagation constant
 - (vi) The amplitude of the magnetic field intensity.
- 7. (a) Define Poynting vector. Derive the integral form of Poynting vector and explain 10 significance of each term.
 - (b) Derive Maxwell's equations in integral and point form for time varying fields. 10