| | (3 Hours) [Total Marks: | 100 | |----|---|------------------| | | N. B.: (1) Question No. 1 is compulsory. (2) Attempt any four questions out of remaining six questions. (3) Assume any suitable data wherever required but justify the same. (4) Figures to the right indicate full marks. | | | 1. | (a) Explain capture range, lock range and pull in time with reference to PLL. (b) Explain log amplifier. (c) List ideal characteristics of op-amp. (d) Explain the working of Schmitt trigger. | 5
5
5
5 | | 2. | (a) Explain with neat diagram the working of IC 555 as monostable multivibrator state and explain any two applications.(b) (i) Draw and explain block diagram of CPLD.(ii) Give features of XC 9500 family. | 10
6
4 | | 3. | (a) Design a Second order KRC band reject filter with f₀ = 50 Hz and bandwidth = 6 Hz. (b) Explain in detail any two applications of Instrumentation amplifier. | 10
10 | | 4. | (a) Write VHDL Code for 4-bit down counter.(b) (i) Explain various documentation standards of sequential circuits.(ii) Explain switch de-bouncing. | 10
6
4 | | 5. | (a) Explain with output derivation the working of inverting and non-inverting adder circuit.(b) Draw and explain the functional block diagram of IC XR-2206. | 10
10 | | 6. | (a) Draw the block diagram of IC 565 PLL. Explain in detail FSK demodulation using PLL.(b) Design a sequence detector to detect a serial input sequence of 1010. Use JK Flip-flops. | 10
10 | | 7. | Write short notes on :— (a) Dual slope A/D Converter (b) LM 380 audio amplifier (c) General architecture of FPGA (d) V to I converter using grounded load. | 20 |