(3 Hours)

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four questions out of the remaining six questions.
- (3) Figures to the right indicate full marks.

1. (a) Show that
$$J_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \left\{ \frac{3 - x^2}{x^2} \sin(x) - \frac{3}{x} \cos(x) \right\}$$
 5

(b) Show that matrix
$$A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$
 is non-derogatory. 5

(c) Evaluate
$$\oint_{C} \frac{1}{\left(z^{3}-1\right)^{2}} dz \text{ where 'c' is } \left|z-1\right| = 1$$

(d) Evaluate
$$\int_{A}^{B} (3x^2y - 2xy) dx + (x^3 - x^2) dy$$
 along $y^2 = 2x^3$ from A(0, 0) and B(2, 4) 5

2. (a) Prove that
$$xJ_n^1(x) = -nJ_n(x) + xJ_{n-1}(x)$$

(b) Show that the matrix
$$A = \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$$
 is diagonalizable. Also find the **7**

transforming matrix and diagonal matrix.

(c) Evaluate
$$\int_{c} \int_{c} (\nabla \times \overline{F}) \cdot d\overline{s}$$
 where

 $\overline{F} = (2x-y+z)i+(x+y-z^2)j+(3x-2y+4z)k$ and 's' is the surface of the cylinder $x^2+y^2=4$ bounded by the plane z=9 and open at the other end.

[TURN OVER

3. (a) Evaluate $\int_{c}^{c} \frac{z+1}{z^3-2z^2} dz$ where 'c' is

7

- (i) the circle |z-2-i|=2
- (ii) the circle |z-1-2i|=2
- (b) Show that $\overline{F} = \left(ye^{xy}\cos(z)\right)i + \left(xe^{xy}\cos(z)\right)j \left(e^{xy}\sin(z)\right)k$ is irrotational and find the scalar potential for \overline{F} and evaluate $\int \overline{F} \cdot d\overline{r}$ along the curve joining the points (0,0,0) and $(-1,2,\pi)$

prove that

- (c) $\int J_3(x) dx = \frac{-2J_1(x)}{x} J_2(x)$
- (a) Define Analytic function. State and prove Cauely-Riemann equation in polar 7 co-ordinates.
 - (b) Verify Gauss-Divergence Theorem. Evaluate for $\overline{F} = (2x)i + (xy)j + z(k)$ over the 7 region bounded by the cylinder $x^2 + y^2 = 4$, t = 0, t = 6
 - (c) If $A = \begin{bmatrix} 1 & 2 & -2 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ find A^{100}
- 5. (a) Define conformal mapping. Find Bilinear transformation which maps the prints z = 0, i, -1 onto w = i, 1, 0.
 - (b) Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{x^6 + 1} dx$
 - (c) If $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$. Find the characteristic roofs and characteristic vectors of $A^3 + I$

- 6. (a) Find all possible Laurent's series expansion of the function $f(z) = \frac{1}{z^2(z-1)(z+2)}$ about z = 0 for (i) |z| < 1, (ii) |z| < 2, (iii) |z| > 2
 - (b) If f(z) = u + iv is analytic and $u + v = \frac{2 \sin(2x)}{e^{2y} + e^{-2y} 2\cos(2x)}$ find f(z).
 - (c) Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ and hence find the matrix $6 = \begin{bmatrix} 2A^5 3A^4 + A^2 4I \end{bmatrix}$
- 7. (a) Prove that the circle |z| = 1 in the z-plane is mapped onto the coordinate in the w-plane under the transformation $w = z^2 + 2z$.
 - (b) Reduce the following quadratic form to Canonical form and find its rank and 7 signature

6

$$x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3$$

(c) Verify Green's Theorem for

$$\int_{C} \left(\frac{1}{y} dx + \frac{1}{x} dy \right)$$
 where 'c' is the boundary of the region defined by

$$x = 1$$
, $x = 4$, $y = 1$ and $y = \sqrt{x}$.