Con. 7076-13.

(3 Hours)

[Total Marks: 100

N.B.:(1) Question no. 1 is compulsory.

- (2) Answer any four out of remaining six questions.
- (3) Figures to the right indicate full marks.
- (4) Illustrate answers with sketches and graph, wherever required.
- (5) Assume suitable data if necessary.
- 1. Answer the following:

20

- (a) Define sensitivity of a control system. How can we reduce the sensitivity of a closed loop system.
- (b) Explain Hurtvitz stability criterion with its disadvantages.
- (c) Define following terms related to second order system, subjected to a unit step input.
 - (i) Rise time.
 - (ii) Peak time.
 - (iii) Peak overshoot.
 - (iv) Delay time.
 - (v) Setting time.
- (d) What are the advantages of a Nyguist Plot.
- (a) If a second order control system has transfer function F(s) = S²+24S+9.
 If a step input is applied to it, determine the time domain specifications. Also sketch the time response.
 - (b) Find the range ot 'k' to make the system stable for a unity feedback system. 10

G(S) =
$$\frac{K(S+20)}{(S+2)(S+3)}$$

3. (a) Determine the transfer functions $\frac{C}{R1}$ and $\frac{C}{R2}$ from the given system below :— 10 Also find C/R.

(b) Find the transfer function of the following system by using signal flow graph. 10

Con. 7076-LJ-11431-13.

2

- Draw the complete root locus for the system :- $G(S)H(S) = \frac{K}{S(S+3)(S+6)}$ 10 4. (a) Obtain the value of k when $\xi = 0.6$ from root locus. Also determine the value of k for marginal stability and critical damping.
 - For a unity feedback system :- $G(S) = \frac{200}{S(S+8)}$, and r(t) = 2t, Determine steady 10 (b) state error. If it is desired to reduce the existing error by 5%, find new value of gain of the system.
- A unity feedback system has a loop gain $G(S) H(S) = \frac{60}{(S+4)(S^2+2S+5)}$ 5. (a) 10 Determine the system stability using Nyguist plot.
 - 10 Compare open loop control system and closed loop control system with at least (b) 3 examples.
- **10** Use Bode plot to determine the frequency response of system, H(S) = 16. (a) $G(S) = \frac{80S^2}{(2S+1)} \frac{}{(S+1)(0.2S+1)}$
 - A unity feedback control system has $G(S) = \frac{K}{(S+4)^3}$ Determine the range of (b) value of k for system stability.
- Write short notes on any two:-7.
 - 20 Stepper motor constructions and its applications in control system. (a)
 - (b) State variable model with an example.
 - Error compensation techniques. (c)