Con. 6787-13. LJ-11350

(3 Hours) [Total Marks: 100

- **N.B.**: (1) Question No. 1 is compulsory.
 - (2) Attempt any **four** out of the remaining **six** questions.
 - (3) Assume suitable data wherever required and justify the same.
- 1. (a) A typical PCB substrate consists of Al₂O₃ with a relative dielectric constant of 10 and a loss tangent of 0.0004 at 10 GHz. Find the conductivity of substrate.
 - (b) Draw the lumped element circuit model for a transmission line. Derive the expression for voltage and current travelling waves.
 - (c) Explain current flow in Pn junction and give the expression for I_{diff} in terms of diffusion constant and Vdiff in terms of doping concentration.
 - (d) A lossless 50Ω microstrip line is terminated into a load with admittance of 0.05 mS. 5 What additional impedance has to be placed in parallel with load to assure impedance of $50~\Omega$.
- 2. (a) A short circuited 50 Ω transmission line section operated at 1 GHz and posseses 10 a phase velocity of 75% of the speed of light. Use both the anlytical and the Smith chart approach to determine the shortest length required to obtain:
 - (i) 5.6 pF Capacitor
 - (ii) 4.7 nH inductor.
 - (b) Explain various terminations used in Microstrip transmission line. 10
- 3. (a) Starting with the equation for normalized admittance:—

$$y = g + jb = \frac{1 - \Gamma}{1 + \Gamma}$$

Prove that the circle equations for the Y-Smith chart are given by the following two formulas:—

- (i) For the constant conductance circle as $\left(\Gamma r + \frac{g}{g+1}\right)^2 + \Gamma i^2 \left(\frac{1}{1+g}\right)^2$
- (ii) For the constant susceptane circle as $(\Gamma r + 1)^2 + (\Gamma i + \frac{1}{b})^2 = (\frac{1}{b})^2$
- (b) Explain with the equivalent circuits the radio frequency behaviour of resistor, inductor 10 and capacitor.
- 4. (a) State and prove Kuroda's four identities.
 - (b) Expalin in brief the principle of operation of HEMT and RF FET along with their 10 construction.

(b)

Con. 6787-LJ-11350-13.

2

- 5. (a) Design a prototype low pass butterworth filter that will provide at least 20dB attenuation 10 at the frequency of f = 2f 3dB. (Calculate order)
 - What is Miller effect? Show that:—

$$C_{M1} = C_{cb} \left(1 - \frac{V_{ce}}{V_{be}} \right)$$
 on the i/p port.

$$C_{M2} = C_{cb} \left(1 - \frac{V_{be}}{V_{ce}} \right)$$
 on the o/p port.

- 6. (a) Derive expresion for internal, external and loaded quality factors for standard 10 series and parallel resonant circuit.
 - (b) Explain the function of BJT in detail.

10

- 7. Write short notes on :—
 - (a) Butterworth filter 5
 - (b) Chip components 5
 - (c) Schottky contacts 5
 - (d) Richard's transformation 5