ATKT

D: PH (April Exam) 181

(2012-13)

(REVISED COURSE)

GS-5103

Con. 6865-13.

elhi:

of

oies

(3 Hours)

[Total Marks: 80

N.B. (1) Question No. 1 is compulsory.

- (2) Attempt any three questions from Question Nos. 2 to Questions No. 6
- (3) Figures to the right indicate full marks.
- 1. (a) If $\cos hx = \sec \theta$ prove that $x = \log (\sec \theta + \tan \theta)$.
 - (b) If $u = \log (x^2 + y^2)$, prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$
 - (c) If $x = r \cos \theta$, $y = r \sin \theta$. Find $\frac{\partial(x, y)}{\partial(r, \theta)}$.
 - (d) Expand $\log (1 + x + x^2 + x^3)$ in powers of x upto x^8 .
 - (e) Show that every square matrix can be uniquely expressed as sum of a symmetric 4 and a Skew-symmetric matrix.
 - (f) Find nth order derivative of $y = \cos x$. $\cos 2x$. $\cos 3x$.
- 2. (a) Solve the equation $x^6 i = 0$.
 - (b) Reduce matrix A to normal form and find its rank where:-

 $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$

- (c) State and prove Euler's theorem for a homogeneous function in two variables and hence find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ where $u = \frac{\sqrt{x} + \sqrt{y}}{x + y}$
- 3. (a) Determine the values of λ so that the equations x + y + z = 1; $x + 2y + 4z = \lambda$; 6 $x + 4y + 10z = \lambda^2$ have a solution and solve them completely in each case.
 - (b) Find the stationary values of $x + 4y + 10z = \lambda^2$ have a solution and solve them completely in each case.
 - $x^3 + y^3 3axy$, a > 0. (c) Separate into real and imagianary parts $tan^{-1}(e^{i\theta})$.

TURN OVER

4. (a) If $x = u \cos v$, $y = u \sin v$

upto three iterations.

Prove that
$$\frac{\partial(x,y)}{\partial(u,v)} \cdot \frac{\partial(u,v)}{\partial(x,y)} = 1$$
.

(b) If
$$\tan [\log (x + iy)] = a + ib$$
, prove that $\tan [\log (x^2 + y^2)] = \frac{2a}{(1 - a^2 - b^2)}$ where $a^2 + b^2 \neq 1$.

8

6

6

6

8

(c) Using Gauss-Siedel iteration method, solve $10x_1 + x_2 + x_3 = 12$ $2x_1 + 10x_2 + x_3 = 13$ $2x_1 + 2x_2 + 10x_3 = 14$

5. (a) Expand $\sin^7 \theta$ in a series of sines of multiples of θ .

(b) Evaluate
$$\lim_{x \to 0} \frac{(x^x - x)}{(x - 1 - \log x)}$$

(c) If $y^{1/m} + y^{-1/m} = 2x$, prove that 8

$$(x^2 - 1) y_{n+2} + (2n + 1) xy_{n+1} + (n^2 - m^2) y_n = 0.$$

(a) Examine the following vectors for linear dependence/Independence.

$$X_1 = (a, b, c), X_2 = (b, c, a), X_3 = (c, a, b)$$
 where $a + b + c \neq 0$.
(b) If $z = f(x, y), x = e^{u} + e^{-v}, y = e^{-u} - e^{v}$, prove that

$$\frac{\partial z}{\partial u} - \, \frac{\partial z}{\partial v} \, = \, x \, \frac{\partial z}{\partial x} \, - \, y \, \frac{\partial z}{\partial y}$$

(c) Fit a straight line to the following data and estimate the production in the year 1957.

Year:	1951	1961	1971	1981	1991
Production in the Thousand tons:	10	12	08	10	13